

 ADVANCED DISCRETE MATHEMATICS

M.Sc., MATHEMATICS First Year

Semester – I, Paper-V

Lesson Writers

 Prof. Dr. Kuncham Syam Prasad
 B.Ed., M.Sc., Ph.D.,
 Department of Mathematics
 Manipal Institute of Technology
 Manipal Academy of Higher Education
 Manipal-576104, Karnataka

 Prof. Dr. Kedukodi Babushri Srinivas
 M.Sc., Ph.D.,
 Department of Mathematics
 Manipal Institute of Technology
 Manipal Academy of Higher Education
 Manipal-576104, Karnataka

 Prof. Dr. S. Srinadh
 M.Sc., Ph.D.,
 Department of Mathematics (Rtd)
 Sri Venkateswara University
 Tirupathi, Andhra Pradesh

 Prof. Dr. Harikrishnan Panackal
 M.Sc., Ph.D.,
 Department of Mathematics
 Manipal Institute of Technology
 Manipal Academy of Higher Education

 Manipal-576104, Karnataka

Editor & Lesson Writer
Prof. Dr. Bhavanari Satyanarayana

M.Sc., M.Tech., B.Ed., Ph.D.,
Department of Mathematics

University College of Sciences
Acharya Nagarjuna University.

Director, I/c

Prof. V.VENKATESWARLU
 MA., M.P.S., M.S.W., M.Phil., Ph.D.

CENTRE FOR DISTANCE EDUCATION
ACHARAYANAGARJUNAUNIVERSITY

NAGARJUNANAGAR – 522510
Ph:0863-2346222,2346208,

0863-2346259(Study Material)
Website: www.anucde.info

e-mail:anucdedirector@gmail.com

M.Sc., MATHEMATICS - ADVANCED DISCRETE MATHEMATICS

First Edition 2025

No. of Copies :

©Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.SC.(Mathematics)
Centre for Distance Education, Acharya Nagarjuna University and this book is meant

for limited Circulation only.

Published by:

 Prof. V.VENKATESWARLU,
Director, I/C
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD
Since its establishment in 1976, Acharya Nagarjuna University has been forging

ahead in the path of progress and dynamism, offering a variety of courses and research

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,

PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with

the aim of taking higher education to the doorstep of all the sectors of the society. The

centre will be a great help to those who cannot join in colleges, those who cannot afford

the exorbitant fees as regular students, and even to housewives desirous of pursuing

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,

courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,

these self-instruction materials have been prepared by eminent and experienced teachers.

The lessons have been drafted with great care and expertise in the stipulated time by these

teachers. Constructive ideas and scholarly suggestions are welcome from students and

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of

this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that in the

years to come, the Centre for Distance Education will go from strength to strength in the

form of new courses and by catering to larger number of people. My congratulations to

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K.Gangadhara Rao
M.Tech.,Ph.D.,

Vice-Chancellor I/c
Acharya Nagarjuna University

M.Sc. – Mathematics Syllabus

SEMESTER-I

105MA24: ADVANCED DISCRETE MATHEMATICS

Unit-I: Propositional Calculus: Statements and Notations- Connectives and Truth Tables –
Tautology and Contradiction – Equivalence of Statement/Formulas – Duality Law and
Tautological Implication – Normal Forms. (Chapter -I of the reference [3]).

Unit-II: The theory of Inference for Statement Calculus – Consistency of Premises and
Indirect Method of Proof. (Chapter -I of the reference [3]).
Predicate Calculus: Predicate Logic – Statement Functions, Variables and Quantifiers – Free
and Bound Variable- Inference Theory for the Predicate Calculus (Chapter -II of the
reference [3]).

Unit-III: Finite Machines: Introduction, State tables and State diagrams, Simple Properties,
Dynamics and Behavior.(refer Chapter 5 of the reference book [1]).

Unit-IV: Properties and Examples of Lattices, Distributive Lattices, Boolean
Polynomials.(Section 1 to 4 of Chapter -I of [2]).

Unit-V: Ideals, filters and equations, minimal forms of Boolean Polynomials, Application of
Lattices: Application of Switching circuits, (Section 5,6 of Chapter-I and Sections 7 and 8 of
Chapter- II of [2]).

Note: For units- III and IV the material of Pages 1 to 66 of [2] is to be Covered.

REFERENCE BOOKS:

[1] “Application Oriented Algebra” JAMES FISHER, IEP, Dun-Danplay Pub.1977.

[2] “Applied Abstract Algebra”, Second Edition, R.LIDL AND G.PILZ, Springer, 1998.

[3] “Bhavanari Satyanarayana, Tumurukota Venkata Pradeep Kumar and Shaik Mohnddin
Shaw, “Mathematical Foundation of Computer Science” BS Publications,(A Unit of BSP
Book Pvt. Ltd.) Hyderabad, India 2016.(ISBN. 978-93-83635-81-8).

[4] Rm. SomaSundaram “Discrete Mathematical Structures” Prentice Hall of India, 2003.

[5] Bhavanari Satyanarayana & Kuncham Syam Prasad, “Discrete Mathematics and Graph
Theory” (For b.Tech/B.Sc./ M.Sc.(Maths),Printice Hall of India, New Delhi. April 2014.

CODE:105MA24
M.Sc DEGREE EXAMINATION

First Semester

Mathematics :: Paper V- ADVANCED DISCRETE MATHEMATICS

MODEL PAPER-I

Time: Three hours Maximum:70 Marks

Answer ONE question from each unit (5x14=70)

UNIT-I

1. (a). What do ou mean by Conjunction and Disjunction. Explain by giving one
example to each. Also write truth tables for both Conjunction and Disjunction.

(b). If p and q are two statements, then show that the statement (p  q)  (p  q) is

equivalent to (p v q)  (p  q) .

(OR)

2. (a). Write down the Contrapositive of the following statement:

“If Rama have Rs.100/- with him, then he will spend Rs. 50/- for his friend

Krishna”.

(b). Find the PCNF of the given statement formula F = X  Y .

UNIT-II

3. (a). Explain the terms: Predicate, 2-place predicate, and m-place predicate. Give one
example for each.

(b). Symbolize “All the people respects selfless leaders”.

(OR)

4. (a). Explain: Universal specification, Universal generalization, Existential specification,
Existential generalization. Give one example each.

(b). Prove the validity of the following argument by using the rules of inference.

All men are warriors. (Premise–1)
All Kings are men. (Premise–2)
Therefore All Kings are warriors.

UNIT-III

5.(a). Define input-output Machine. Explain the Parity-Check Machine and write down its
State table.

.
(b). Let f be a state homomorphism from the state machine M = (ζ, ℐ, δ) onto the

state machine M1 = (ζ1, ℐ, δ1). Then prove that there is a state machine congruence
on M such that M is isomorphic to M1.

(OR)

6. (a). Let M = (ζ, ℐ, O, δ, θ) be an i/o-machine and let  an i/o-machine

congruence. Then prove that M = (, ℐ, O, δ , θ) is an i/o-machine and the
function f from ζ onto  given by f(s) = [s] is an i/o-homomorphim form

M onto M .

(b). Minimize the number of states for the machine given by the following state table.

Also write down the reduced machine of the given machine.

States
δ θ
0 1 0 1

s0 s0 s2 0 0
s1 s2 s5 1 0
s2 s2 s2 1 1
s3 s1 s1 1 1
s4 s2 s3 0 1
s5 s4 s5 1 1

s6 s2 s6 1 1

UNIT-IV

7. (a). Define Lattice ordered set, and Algebraic Lattice.

Prove that a Lattice ordered set can be turned into an Algebraic Lattice.

(b). (i). Give two examples of lattices with five elements.

(ii). Give two examples of lattices with six elements.

(iii). Define product lattice of a collection of lattices.

(OR)

8. (a). Define modular lattice and distributive lattice.

Prove that every distributive lattice is a modular lattice.

(b). Find the d.n.f of the following function f :

f(x1, x2, x3) = [x1  ((x 2 v x 3)1)] v{[(x1  x2) v x 3
1]  x1}.

UNIT-V

9. (a). Define Boolean Algebra.

If B is a finite Boolean algebra, and A denotes the set of all atoms in B, then prove
that B is Boolean isomorphic to P(A).

(b). Let B be a Boolean algebra and I a non-empty subset of B. Then

prove that the following three conditions are equivalent:

(i) I  B (That is, I is an ideal of B);

(ii) If i, j ϵ I and b ϵ B such that b  i, then i + j ϵ I and b ϵ I.

(iii) There exists a Boolean algebra B1 and a Boolean homomorphism h : B → B1 such
that I = Ker h.

(OR)

10. (a). (i). What do you mean by Karnaugh diagram. Give an example.

(ii). Simplify the polynomial p = (x1 + x2)(x1 + x3) + x1x2x3 by using its Karnaugh
diagram.

(b).(i). Draw switching circuit which represent the Boolean expression:

x1 (x2v x3).
(ii). Draw NAND gate.
(iii). What do you mean by Half-adder and Full adder. Explain with their

diagrams.

CONTENTS

S.NO. LESSON PAGES

1. STATEMENTS, CONNECTIVES AND TRUTH TABLES 1.1 – 1.13

2. TYPES, EQUIVALENCES, IMPLICATIONS OF STATEMENTS 2.1 – 2.9

3. NORMAL FORMS 3.1 – 3.9

4. THEORY OF INFERENCE AND PREDICATE LOGIC 4.1 – 4.13

5. QUANTIFIERS 5.1 – 5.11

6. INFERENCE THEORY FOR PREDICATE CALCULUS 6.1 – 6.8

7. STATE TABLES AND DIAGRAMS 7.1 – 7.8

8. STATE HOMOMORPHISMS 8.1 – 8.6

9. INPUT / OUTPUT (I/O) HOMOMORPHISMS 9.1 – 9.10

10. REDUCED MACHINE AND ALGORITHM 10.1 – 10.9

11. SOME PROPERTIES OF LATTICES 11.1– 11.13

12. SOME EXAMPLES OF LATTICES AND HOMOMORPHISMS 12.1 – 12.11

13. MODULAR AND DISTRIBUTIVE LATTICES 13.1 – 13.15

14. BOOLEAN POLYNOMIALS 14.1 – 14.20

15. FINITE BOOLEAN ALGEBRAS 15.1 – 15.12

16. IDEALS, FILTERS AND SOLUTIONS OF BOOLEAN

EXPRESSIONS

16.1 – 16.13

17. MINIMUM FORMS OF BOOLEAN POLYNOMIALS,

KARNAUGH DIAGRAMS

17.1 – 17.17

18. SWITCHING CIRCUITS AND GATING NETWORKS 18.1 – 18.12

19. SOME APPLICATIONS 19.1 – 19.17

LESSON - 1

STATEMENTS, CONNECTIVES, AND TRUTH
TABLES

OBJECTIVE:

 To know Statements
 To understand the Meaning of syllogism
 To identify different types of notations
 To Learn the validity of the arguments
 To have proper understanding of different connectives
 To develop skills to construct the truth tables

STRUCTURE

1.1 Introduction
1.2 Statements.
1.3. Syllogism.
1.4 Notations.
1.5 Connectives and Truth Tables
1.6 Summary
1.7 Technical Terms
1.8 Self Assessment Questions
1.9 Suggested Readings

1.1. INTRODUCTION:

Logic is a form of reasoning. The main object of the logic is to explain the rules by

which one can determine the validity or to know the strength of any particular argument or
reasoning. Logic deals with all types of reasons like: legal arguments, mathematical proofs,
conclusions in a scientific theory based upon a set of given hypothesis. The rules are called
“Rules of Inference”. The rules should be independent of any particular argument or
discipline or language used in the argument.

Logic was discussed by its ancient founder Aristotle (384 BC – 322 BC) from two
quite different points of view. On one hand he regarded logic as an instrument or organ for
appraising the correctness or strength of the reasoning; On the other hand, he treated the
principles and methods of logic as interesting and important topics of the study. According to
Charles Pierce “the logic is to classify the arguments, so that all those that are bad are thrown
into one basket and those which are good into another”. Thus the study of logic, is nothing
but the study of the methods and principles to distinguish the correct (good) arguments from
incorrect (bad) arguments. The study of logic will provide the reader certain techniques for
testing the validity of a given arguments. So the logic is the science of reasoning. Reasoning
is a special kind of thinking called inferring, through which conclusions can be drawn.

Centre for Distance Education 1.2 Acharya Nagarjuna University

1.2 STATEMENTS:

In any language, a sentence is constructed by means of some words in that language. So a
meaningful sequence of words is called as a sentence. A statement is a sentence for which
we can say whether it is true or false.

We need an objective language to frame the rules of inference or theory. The basic
unit of our objective language is called a atomic statement or simple statement or primary
statement (variable). We assume that these primary statements cannot be broken down
further or analyzed into simpler statements. These primary statements have only one of the
two possible values TRUE (T) or FALSE (F). These values T or F are referred as truth value
of the primary statement. We often denote the truth value TRUTH (T) by ‘1’ and the truth
value FALSE (F) by ‘0’.

1.2.1. Examples:

(i). 2 + 3 = 5.
(ii). New Delhi is the capital city of HUNGARY.
(iii). Open the door
(iv). 2 + 3 = 6.

 The sentence (iii) is not a primary statement because it has neither the truth value ‘T’
nor ‘F’. The remaining three statements are primary statements. Statements (i) and has the
truth value ‘T’ (or 1), and the statements (ii) and (iv) have the truth value ‘F’ (or 0).

1.3. SYLLOGISM:

 We shall mean, by formal logic, a system of rules and procedures used to decide
whether or not a statement follows from some given set of statements.

1.3.1. Note: A familiar example from Aristotelian logic is:

 (i). All men are mortal
 (ii). Socrates is a man
Therefore (iii). Socrates is mortal.

In order to have better understanding , we use symbols. The symbols are easy to manipulate.
Hence, the logic we study is also named as “Symbolic logic”.

According to the logic, if any three statements have the following form

(i) All M are P
(ii) S is M

Therefore (iii) S is P

then (iii) follows from (i) and (ii).
The argument is correct, no matter whether the meanings of statements (i), (ii), and (iii) are
correct. All that required is that they have the forms (i), (ii), and (iii). In Aristotelian logic,
an argument of this type is called syllogism.

Example 1.1

Example 1.2

 Advanced Discrete Mathematics 1.3 Statements, Connectives …

The formulation of the syllogism is contained in Aristotle’s organon. It had a great
fascination for medieval logicians, for almost all their work centered about ascertaining its
valid moods. The three characteristic properties of a syllogism are as follows:

(i). It consists of three statements. The first two statements are called as premises, and the
third statement is called as conclusion. The third one (conclusion) being a logical
consequence of the first two (the premises).

(ii). Each of the three sentences has one of the four forms given in the Table -1:

Classification Examples
Universal and affirmative judgment All X is Y.

All monkeys are tree climbers.

All integers are real numbers.

All men are mortal.

Universal and negative judgment No X is Y.

No man is mortal.

No monkey is a tree climber.

No negative number is a positive number.

Particular and affirmative judgment Some X is Y.

Some men are mortal.

Some monkeys are tree climbers.

Some real numbers are integers.

Particular and negative judgment Some X is not Y.

Some men are not mortal.

Some monkeys are not tree climbers.

Some real numbers are not integers.

Table -1

1.3.2. Note:
Consider Example -1.2. The first two propositions are premises and the third is the
conclusion. Here the subject of the conclusion is “S”; and the predicate of the conclusion is
“P” and the term to which they are both compared is called the middle term and is denoted by
“M”.

Consider Example -1.1. The first two propositions

“All men are mortal”
“Socrates is a man”

are premises. The third proposition
 “Socrates is mortal”
is the conclusion. The subject of the conclusion is “Socrates” and the predicate of conclusion
is “mortal”. The middle term is “men”.

Centre for Distance Education 1.4 Acharya Nagarjuna University

1.3.3 Example: (i). All fishes are mammals
 (ii). All mammals have wings
Therefore (iii). All fishes have wings.
This argument is valid. Note that both the premises are false, and the conclusion also false.
The argument of this example 1.3 is valid because if its premises were true then its
conclusion would have to be true. Thus the validity of an argument does not guarantee the
truth of the conclusion.

1.3.4 Example: (i). No Professors are rich
 (ii). All handsome men are Professors
Therefore (iii). No handsome men are rich.
This argument/syllogism is valid (it is similar to Example 1.3). Note that both the premises
are false, and the conclusion also false. So we may conclude that the validity of a syllogism
is independent of the truth or falsity of its conclusion.

1.3.5 Example: (i). The denominator of
18

14
 is even.

 (ii).
9

7
 is another name for

18

14
.

Therefore (iii). The denominator of
9

7
 is even.

This is an invalid argument. The subject in (i) relates to a part (called denominator) of
18

14
.

The subject in (ii) is not related to the denominator. So, in this case, (iii) cannot get from (i)
and (ii). That is, we cannot get the conclusion from the premises.

1.3.6 Example: (i). If I am President then, I am famous.
 (ii). I am not President
Therefore (iii). I am not famous.

Here the argument is clearly invalid because ‘one may be famous even though he/she is not a
President’.

1.4. NOTATIONS, CONNECTIVES AND TRUTH TABLES:

1.4.1. Some Examples: (i) “x > 3” is a statement. This statement is neither true nor false
because the value of the variable x is not specified. Therefore “x > 3” is not a proposition.
“x + y + 4 = 7” is a statement but it is not a proposition.

(ii). “10 > 3” is a statement. This statement is true. Therefore “10 > 3” is a proposition.

(iii). “10 < 3” is a statement. This statement is false (or not true). Therefore “10 < 3” is a
proposition.
 (iv). “x  3 for all x such that x  5” is a statement. This statement is true.
Therefore, it is a proposition.
 (v). “Guntur is the capital of Andhra Pradesh” is a statement which is false. Therefore it is a
proposition.
(vi). “What is the time now ?”. This is not a statement. So this is not a proposition.
(vii). “2 + 2 = 3” is a statement which is false. Therefore it is a proposition.

 Advanced Discrete Mathematics 1.5 Statements, Connectives …

1.4.2 Subject and Predicate: Consider the statement “Ravana is a King”. In this
statement “Ravana” is the subject of the statement. The other part “is a King” is called
predicate.

1.4.3. Notation

Observe the following statements:

(i) p: Socrates is a man.

(ii) q: 2 + 3 = 6.

(iii) In statements (i), (ii), p and q are the symbols used. Here “p” is a statement in
symbolic logic that corresponds to the English statement “Socrates is a man”.

 As we know, “Socrates” is the subject and “is a man” is the predicate. The statement P
(that is, “Socrates is a man”) contains only one subject and only one predicate. So this is a
primary statement.

 Similarly the statement “q” that represents 2+ 3 = 6 is also a primary statement. Note that
the symbols “p” and “q” were used to represent the names of the statements. We may use this
symbolic notation for statements throughout.

 From the above discussions, one can understand that the basic unit of our objective
language is called as primary or atomic statement (or variable). We assume that these
primary (or atomic) statements cannot be further broken down into simple statements.

1.5. CONNECTIVES AND TRUTH TABLES:

By using connectives “not’, “or”, “and”, etc., we may combine two or more primary
statements. The words like “or”, “and” are called as connectives.

1.5.1. Example: Consider the two statements given by

(i). p: Rama is a King

(u). q: Sita is a Queen.

We know that the two statements (i) and (ii) are primary statements. By using the connective
“and” we can combine these two statements to get the third statement:

 (iii). Rama is a King and Sita is a Queen.

The statement (iii) is called as compound statement.

 The sentences constructed by using two or more primary (or simple or atomic) statements
and certain sentential connectives are called as compound statements. The simple statements
used to form compound statements are named as the components of the compound statement.

To form compound statements we use simple sentences and the connectives “and”, “or”,
“if....then....”, “if and only if”, etc.

1.5.2. Example

(i) p and q: Rama is a King and Sita is a Queen.

(ii) p or q: Rama is a King or Sita is a Queen.

(iii) If p then q: If Rama is a King, then Sita is a Queen.

(iv) p if and only if q: “Rama is a King” if and only if “Sita is a Queen”.

Centre for Distance Education 1.6 Acharya Nagarjuna University

1.5.3: Negation:
Associated with every given statement ‘p’ there corresponds an another statement called its
negation. The negation of a statement is formed by using/adding the word “not”.
If “p” is a statement, then the negation of p is “not P”(denoted by “~p”, and called as
negation of P). The symbol “~” is called “curl” or “twiddle” or “tilde”. The notation “~p” is
false if “p” is true. If “p” is false, then “~p” is true. The symbol p (or p) is also used to
represent the negation of p.

1.5.4: Examples:
(i). Let p be the statement “New York is a city”. Now ~p is the statement “Not, New York is
a city” (equivalently, “New York is not a city”).
(ii) If “p : Rama is a King”, then “~ p: Rama is not a King”.
(iii). If “ U : No angle can be trisected by suing straightedge and compass alone”, then
“ ~U: Some angles can be trisected by using straightedge and compass alone”.

1.5.5. The truth Table for the negation of a statement

P ~P
1 0
0 1

As we know, here T (or 1) stands for “True” and F (or 0)stands for “False”.

1.5.6. Conjunction:
The conjunction (in symbol,  (read as meet or and)) is commonly used to combine sentences
/ statements larger ones. The symbol ampersand (“&”) also used for “and”. The statement
“A  B” or “A & B” will be read as the “conjunction of A and B”. Let P and Q be
statements. The conjunction of P and Q (denoted by P  Q) is true when both P and Q are
true; and is false otherwise. In other words, P  Q is true only if both P is true and Q is true.

1.5.7: Examples:

(i). If P : Rama is a King ; Q : Sita is a Queen , then .
 P  Q : Rama is a King and Sita is a Queen.

(ii). If P : Two is an even number ; Q : Two is a positive number , then .
 P  Q : Two is an even number and a positive number.

1.5.8: Truth Table for conjunction

P Q P  Q
T T T
T F F
F T F
T F F

1.5.9: Disjunction:
The disjunction (“or”, in symbol ) is used to connect two sentences / statements to form a
combined sentence/ compound statement. The symbol  is also called as join. “P  Q” is
called as disjunction of P, Q. If “P” and “Q” are statements, then “P  Q” is a statement that
is true when “P” is true or “Q” is true or both are true.
In other words, “P  Q” is false only when both “P” and “Q” are false.

P ~P
T F
F T

 Advanced Discrete Mathematics 1.7 Statements, Connectives …

1.5.10. Examples: (i). If P : Rama is a King ;
 Q : Sita is a Queen , then .
 P  Q : Rama is a King or Sita is a Queen.

(ii). If P : Two is an even number ;

 Q : Two is a positive number , then .
 P  Q : Two is an even number or a positive number.

1.5.11: Truth Table for disjunction

P Q P  Q
T T T
F T T
T F T
F F F

1.5.12. Example: Write the following statements in symbolic form

(i) Rama and Bhima are rich

(ii) Neither Rama nor Sita is poor

Solution: Suppose that

 p: Rama is rich

 q: Bhima is Rich

 Then the given statement can be written in the symbolic form as p q .

(i) write

 p: Rama is poor

 q: Sita is poor.

Then

 ~p: Rama is not poor

 ~q: Sita is not poor

The other form of the given statement is “Rama is not poor” and “Sita is not poor”, hence
the required answer is (~p)  (~q).

1.5.13 Example

Obtain the compound statement that is true if exactly two of the three statements p, q and r
are true?

Solution: We know that

 (i). (p q)  (r) is true if “p and q are true” and “r is false”.

 (ii). (p r)  (q) is true if “p and r are true” and “q is false”.

 (iii). (q r)  (p) is true if “q and r are true” and “p is false”.

Centre for Distance Education 1.8 Acharya Nagarjuna University

 Hence            p q 7r p r 7q q r 7p                   is the compound statement that is

true when exactly two of the given three statements p, q and r are true.

1.5.14. Notation: For any two given statements p and q

(i) The compound statement (p  q) is denoted by “p ↑ q”

(ii) The compound statement is(pq) denoted by “p  q”

(iii) Note that the symbols “↑” and “” are also connectives.

 (iv). The truth table for “p ↑ q” is given by

p q p  q p 

q
T T T F
T F F T
F T F T
F F F T

Truth table for “p  q”

 (v). The truth table for “p  q” is given by

p q p  q p  q
T T T F
T F T F
F T T F
F F F T

Truth table for “p  q”

1.5.15 Statement Formulas and Truth Tables

We know that the statements those contains one or more simple statements and some

connectives are called as compound (or composite or molecular) statements.

 For example, if p and q are two simple statements,

then p, p q , p q , p  (q), (p) (q) are some composite statements.

Such statements are also called as statement formulas derived from the simple statements p

and q. In this situation, p and q are called as the components of the statement formulas. The

truth value of a statement formulas depends on the truth value of the primary statements

involved in it.

As we already know, p means negation of p: and  (p q) means negation of (p q)

 Advanced Discrete Mathematics 1.9 Statements, Connectives …

1.5.16. Example: Construct the truth tables for the following statement formulas

(i) ~(~p) [that is  (p)]

(ii) q  (q)

(iii) p (q)

Solution:
(i).

 p ~p ~(~p)
1 0 1
0 1 0

Truth Table for ~(~p)

 Note that the truth value of both p and ~(~p) are same in all cases

(ii).

q 7q q(q)

1 0 0
0 1 0

Truth table for q(7q)

Note that the truth value of q(q) is always zero (0 or F).

(iii).

p q 7q p(q)
T T F T
T F T T
F T F F
F F T T

Truth Table for p (7q)

1.5.17. Implication (or Conditional Statement):

The implication of the statements p and q is a statement that has the form “if p, then q”

(denoted by p q). The truth value of “ p q ” is false only if “p is true” and “q is false”. In

all other cases, the statement “ p q ” has truth value “true” (or T). In this implication p is

called the hypothesis (or antecedent or premise) and q is called the conclusion (or

consequence).

 “P  Q” can be read in any one of the following different ways:
 (i). P implies Q;
(ii). Q is a (logical) consequence of P;
(iii). P is a sufficient condition for Q;
(iv). Q is a necessary condition for P;
(v). If P then Q;

Centre for Distance Education 1.10 Acharya Nagarjuna University

(vi). P only if Q.
We may also denote “P  Q” by “P  Q”.

Truth Table for “Implication” is given below

1.5.18. Examples:

(i). “If x > 10, then x > 2” (or “x > 10  x > 2”) is a true statement (because if “x > 10” is

true, then “x > 2” is also true)

(ii) If “today is a Sunday, then tomorrow is a Monday” (In other words, today is a Sunday

 tomorrow is a Monday) is true.

(iii). If “today is a Sunday, then tomorrow is a Saturday” is not true.

(iiii). If “x = 5”, then “2x = 10” is a true statement.

In other words, “x = 5”  “2x = 10”

1.5.19. Example: Construct the truth table for p p q 

Solution:

p q p 
q

p  p 
q

1 1 1 1
1 1 1 1
0 0 1 1
0 0 0 1

Truth Table for p  p  q

Note that the truth value of the statement p p q  is always 1.

1.5.20 Biconditional (or Double implication):

If p , q are statements, then the double implication of the statements p, q is a statement

 “p if and only if q” (denoted by p  q).

The truth value of p  q is true if “p” and “q” have the same truth values and is false if they
have opposite truth values. The symbol “  ” may be read as “if and only if”. Note that p
 q is nothing but the statement:

 “(p  q) and (q  p) ” (or (p  q)  (q  p))

P Q P  Q
T T T
T F F
F T T
F F T

 Advanced Discrete Mathematics 1.11 Statements, Connectives …

The truth table for “Double implication” is given below

p q p  q
1 1 1
0 1 0
1 0 0
0 0 1

Truth table for p  q

1.5.21. Well formed formulas:

As we know a “statement formula” is an expression which is a sequence of variables,
parentheses and connectives. Now we present a recursive definition for “statement formula”.
It may be often called as a well-formed formula.

 A well-formed formula can be generated by the following way:

Rule-1: A statement symbol (or variable) is a well-formed formula.

Rule-2: If X is a well-formed formula then ~X is also a well formed formula.

Rule-3: If X and Y are well formed formulas, then (x y) , (x y) , (x y) , (x  y) are also

well formed formulas.

 We conclude that a string consisting of statement symbols, parenthesis, connectives is a

well formed formula if it can be obtained by finitely many applications of the rules 1, 2 and 3

mentioned above.

 Note that p, p, p q , p q , (7p) q , p q , (p q) r  , (p q) (r q)   are some well
formed formulas.

1.5.22. The operation  or  :

There is an operation (which was not yet discussed, and used often) on statements (the
operation is denoted by  or).

This operation is called as “ring sum” (or “exclusive or”). P  Q is the exclusive or of the
statements P and Q.
The rule is that P  Q is the proposition that is true when exactly one of P and Q is true, and
is false otherwise.
 The statement P  Q is also denoted by P  Q.

The truth table for P  Q is given by

P Q P  Q
1 0 1
0 1 1
1 1 0
0 0 0

Centre for Distance Education 1.12 Acharya Nagarjuna University

1.5.23. Examples:
(i). Let P: 5 > 3 and Q: 8 > 4. Since both P and Q are true (1), we have that P  Q is false

(0).

(ii). Let P: “5 > 3” and Q: “3 > 5”. Since P is true and Q is false, we have that P  Q is

true.

1.5.24 Example:
If p and q are two statements, then show that the statement (p q) (p q)   is equivalent to

(p q) (p q)   .

Solution: In the following, we present the truth table for the given two compound
statements.

Truth table

p
(1)

q
(2)

p卯q
(3)

(p卭q)⊕(p ∧q)
(4)

p∨q
(5)

p卯q
(6)

(p∨q)∧(p卯q)
(7)

T T F F T F F
T F T F T F F
F T T F T F F
F F T F F T F

Since the values in columns (4) and (7) are same, we have that the two given statements are
equivalent.

1.6 SUMMARY:

Logic is a form of reasoning. The main object of the logic is to explain the rules by which
one can determine the validity or to know the strength of any particular argument or
reasoning. The rules are called rule of inference. We learnt basic terms of logic such as
syllogism and truth values of the argument, etc.

1.7 TECHNICAL TERMS:

Truth values:
The primary statements have only one of the two possible values TRUE (T) or FALSE (F).
TRUTH (T) by ‘1’ and the truth value of FALSE (F) by ‘0’. T or F are called as truth values
of the statement.

Syllogism:
It is an argument consisting of two propositions called premises and a third proposition called
the conclusion.

1.8 SELF ASSESSMENT QUESTIONS:

1. Check whether the following arguments/statements are valid. If necessary, support your
answer with reasons.
 (a). If 18 is divided by 3, the result is 5 (Ans: FALSE)
 (b). We use 3, 5, 6 to write 315. (Ans: FALSE)
 (c). The denominator of 5/9 is even (Ans: FALSE)

 Advanced Discrete Mathematics 1.13 Statements, Connectives …

 (d). The numerator of 5/9 is odd (Ans: TRUE)

2. Observe the argument.
 The denominator of 5/9 is odd
 10/8 is another name for 5/9.
 Therefore the denominator of 10/18 is odd. (Ans: Not valid)

3. All who ride by airplane were born after A.D.1800.
 Socrates rode by air plane.
 Therefore Socrates was born after A.D.1800.
 (Ans: argument is valid, but conclusion is false)

4. All monkeys are tree climbers
 All marmosets are monkeys
 Therefore all marmosets are tree climbers.
 (Ans: argument is valid)

5. (i). All bats are mammals
 (ii). All mammals have lungs
 Therefore (iii). All bats have lungs
 (Ans: That is a valid argument. But this argument contains false statement)

6. (i). If Einstein were the president then he would be famous
 (ii). Einstein is not the president
 Therefore (iii). Einstein is not famous.
 (Ans: This argument is clearly invalid. Here premises are true, but the conclusion
 is false)

7. (i). All whales are heavy
 (ii). All elephants are heavy
 Therefore (iii). All whales are elephants
 (Ans: This not a valid argument).

1.9 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Bhavanari Satyanarayana

LESSON -2

TYPES, EQUIVALENCES, IMPLICATIONS OF

STATEMENTS

OBJECTIVE:

 To know types of Statements.

 To understand the Equivalence of Statements.

 To identify different types of notations

 To calculate truth values of the given statements.

 To have proper understanding of different implications.

 To develop skills in constructing the truth tables

STRUCTURE:

2.1 Introduction

2.2 Some Types of Statements.

2.3. Equivalence of Statements / Formulas.

2.4. Duality and Tautological Implication.

2.5 Summary

2.6 Technical Terms

2.7 Self Assessment Questions

2.8 Suggested Readings

2.1. INTRODUCTION:

In this Lesson, we study the important types of Statements namely Tautology, Contradiction,

and Contingency. Later, we study the Equivalences and Implications of different

Statements.

2.2 SOME TYPES OF STATEMENTS:

Tautology and contradiction are two different types of statements, and are important concepts

in the study of logic.

2.2.1 Tautology

Tautology is a statement expression which has truth value ‘T’ for all possible values of the

statement variables involved in the expression.

2.2.2 Examples: (i). Show that p (p) is a tautology.

(ii). Form the truth table for the statement [p  (p  q)] p . Is it a tautology.

Solution: (i).

p ~p p∨(∼p)

1 0 1

0 1 1

Table for p (p)

Centre for Distance Education 2.2 Acharya Nagarjuna University

 Observe the above Table for p (7p) . In all cases, the truth value of p (p) is true, and

so the statement p (p) is a tautology.

(ii). The required truth table is given below:

p q p  q p  (p  q) p [p  (p  q)] p

0 0 0 0 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 0 1

Observing the above table we can conclude that the statement [p  (p  q)] p is always

true, and so it is a tautology.

2.2.3. Contradiction.

A contradiction (or absurdity or Fallacy) is a statement expression whose truth value is

always false.

2.2.4. Examples: (i). Show that the statement p∧~ p is a contradiction.

 (ii). Show that [p  (p  q)] p is a contradiction.

Solution: (i).

p ~p p∧~ p

1 0 0

0 1 0

Truth table for p ~ p

 Observe the above truth table for the statement p∧~ p . It is clear that in all cases, the

truth value of the statement p∧~ p is ‘0’ (false), and so p∧~ p is a contradiction.

(ii). Now we write down the truth table

P q p  q p  (p  q) p [p  (p  q)] p

0 0 0 0 1 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 1 1 0 0

Observing the table, we can conclude that [p  (p  q)] p is always false. Hence

[p  (p  q)]  p is a contradiction.

2.2.5. Contingency

A statement expression that is neither a tautology nor a contradiction is called a contingency.

Advanced Discrete Mathematics 2.3 Types, Equivalences, Implications…

2.2.6. Example: (i). Show that the statement p  q is a contingency.

(ii). Prove that the statement “ (p q) (p q)   ” is a contingency.

Solution: (i). Consider the following truth table for the given statement p  q.

p q p  q

1 1 1

0 1 0

1 0 0

0 0 1

Truth table for p  q

 Since p  q is not a tautology, and not a contradiction, we conclude that it is a contingency.

 (ii). Let us observe the following truth table of given statement “ (p q) (p q)   ” .

p q p →q (p∧q) (p → q) →(p ∧q)

T T T T T

T F F F T

F T T F F

F F T F F

Truth table for (p q) (p q)  

 Clearly all the truth values of the given statement is neither “T” nor “F”. Therefore the

given statement is neither a tautology nor a contradiction, and so it is a contingency.

2.3 EQUIVALENCE OF STATEMENTS / FORMULAS:

In this section, we study the equivalence of the statements in the theory of logic.

2.3.1 Equivalent Statements:

 Let n be a positive integer and p1, p2, ...pn... are n variables. Let A and B be two statements

involving the n variables p1, p2, ...pn... We say A and B are equivalent if the truth values of A

is equal to the corresponding truth values of B for every 2n possible sets of truth values

assigned to p1, p2, ...pn . If A is equal to B, then this fact is denoted by A B . In other

words A B is a tautology.

2.3.2. Examples: (i). Prove that the statements p⇒q and ∼p∨q are equivalent.

(ii). Show that ~ (~p) is equivalent to P.

Solution: (i). Write A:(p q) , and B: ∼p∨q . Now we have to verify that A B .

 Observe the truth table for the statements A and B which is given below.

Centre for Distance Education 2.4 Acharya Nagarjuna University

p q ~ p p⇒q ∼p∨q

T T F T T

T F F F F

F T T T T

F F T T T

Truth table for A & B

 We observe that the truth values of A and B are equal in all cases. So the statement A is

equivalent to statement B. In other words, A B is a tautology.

(ii). Let us consider the two statements A: p, B: ~ (~p) .

 Observe the truth table for the statements A & B which is given below

p ~ p
~ (~

p)

T F T

T F T

F T F

F T F

Truth table for statements p and ~ (~p).

 Observe the truth table. We understand that A: p, B: ~ (~p) are equivalent.

2.3.3. Equivalent formulas (One can verify the following statements through truth

tables).

1.

p p p

p p p

  


   The Idempotent laws (with respect to  and ).

2.
p (q r) (p q) r

p (q r) p (q r)

     


     
 The Associative laws (with respect to  and ).

3.
p q q p

p q q p

   


   
 The Commutative laws (with respect to  and ).

4.
p (q r) (p q) (p r)

p (q r) (p q) (p r)

      


      
 The Distributive laws (with respect to  and ).

5.
P F P

P F F

 

 

6.

P T T

P T P

 

 

Advanced Discrete Mathematics 2.5 Types, Equivalences, Implications…

7.
P  (~ P)  T.

 P  (~ P)  F The Complement laws (with respect to  and ).

8.
p (p q) p

p (p q) p

   


   
 The Absorption laws (with respect to  and ).

9. ~ (P  Q)  (~P  ~Q)

 ~ (P  Q)  (~P  ~Q) De Morgan’s laws (with respect to  and ).

2.3.4. Example: (i). Show that (not through the truth tables) the two statements

[(p  q)  (p  r)] and [p  (q  r)] are equivalent. In other words prove that

 [(p  q)  (p  r)] if and only if [p  (q r)]

Solution: [(p  q)  (p  r)] 

 (~ p  q)  (p  r) [since (a  b)  (~a  b) (refer Example 1.3.2. (i))] .

 (~p q)  (~p  r) [since (a  b)  (~a  b) (refer Example 1.3.2. (i))]

 ~p  (q r) (by Distributive Law)

 p  (q r) [since (a  b)  (~a  b) (refer Example 1.3.2. (i))].

This completes the solution.

2.3.5. Example:

Let n be a fixed positive integer. Consider the two statements:

 p: n is an even number

 q: n + 1 is an odd number

Show that p and q are equivalent

Solution: Let p be a true statement. Then n is an even number. Since n is even, it is clear that

(n + 1) is an odd number. Hence q is true.

 Similarly if q is true, then (n + 1) is an odd number and so n = (n + 1) –1 is even. Hence p

is true. So we conclude that p q is true. In other words, p and q are two different and

equivalent statements.

2.4 DUALITY AND TAUTOLOGICAL IMPLICATION:

2.4.1. Dual Statement:

Let A and B be any two formulas. Then A is said to be the dual of B, if A be obtained from

B by replacing “  ” by “ ” and “ ” by “ ”. It is clear that if A is the dual of B, then B is

Centre for Distance Education 2.6 Acharya Nagarjuna University

the dual of A. Note that (i). the connectives “ ” and “ ” are dual each other; and the dual

of the value “T” is “F”, and the dual of F is T.

2.4.2. Examples:

(i) “ (p q) r  ” is the dual of “ (p q) r  ”

(ii) (p q) T  is the dual of (p q) T  .

2.4.3. Tautological Implications

A statement A is said to tautologically imply a statement B if and only if A B is a

tautology.

 This fact is denote by (same as) A B , we read it as “A implies B”. In other words,

A B states that “ A B is a tautology” or “A tautologically implies B”.

2.4.4. Note: The connectivities  ,  are symmetric in the sense that

 p q q p  

 p q q p  

2.4.5. Converse: For any statement formula p q , the statement formula q p is called

as the converse of the statement p q , .

2.4.6. Inverse (or opposite): For any statement formula p q , the statement formula ~p 

~q is called the inverse (or opposite) of p q .

2.4.7. Contrapositive

For any statement formula p q , the statement formula ~q  ~p is called as the

Contrapositive of p q .

2.4.8. Note: For the convenience of the reader we provide the concepts: Converse, inverse,

and contrapositive, in one table.

Given statement

p  q

Converse

q  p

Inverse (or opposite)

~p  ~q

(equivalent to the converse)

Contrapositive

~q  ~p

(equivalent to the implication)

2.4.9. Example: Write down the Contrapositive of the following statement.

“If Rama have Rs.100/- with him, then he will spend Rs. 50/- for his friend Krishna”.

Solution: write p: “Rama have Rs. 100/- with him“

 q: “Rama spend Rs. 50/- for his friend krishna”

Advanced Discrete Mathematics 2.7 Types, Equivalences, Implications…

Given statement is “ p q ”.

We know that the Contrapositive of “ p q ” is ~q  ~p.

 It is clear that ~ q: “Rama does not spend Rs.50/- for his friend Krishna”

 ~ p: Rama does not have Rs. 100/- with him.

 So the required statement is as follows:

 If “Rama does not spend Rs. 50/- for his friend Krishna” then “Rama does not have Rs.

100/-with him”.

2.4.10. Some Implications

The following implications have importance in proving further statements. All of them can be

proved by using truth tables or by any other methods in study.

p q p  (1.1)

 (p  q)  q (1.2)

p (p q)  (1.3)

~p  (p  q) (1.4)

 q  (p  q) (1.5)

~ (p  q)  p (1.6)

~ (p  q)  ~ q (1.7)

p  (p  q)  ~p (1.8)

~p  (p  q)  q (1.9)

(p q) (q r) (p r)     (1.10)

(p q) (p r) (q r) r      (1.11)

 ~q  (p  q)  ~p (1.12)

2.4.11 Example:

Construct the truth tables for converse, inverse and Contrapositive of the statement (pq).

Solution: Given statement is “ p q ”.

(i) The truth table of the converse (q  p)of the proposition “p  q” is as follows:

p Q (p → q) q →p

1 1 1 1

1 0 0 1

0 0 1 0

0 0 1 1

Centre for Distance Education 2.8 Acharya Nagarjuna University

Truth table for proposition “ q p ” (Converse of proposition “ p q ”)

(ii) The Truth table for the inverse (~ p  ~ q) of the proposition “ p q ” is as follows:

p q ~ p ~ q p →q ∼p →∼q

1 1 0 0 1 1

1 0 0 1 0 1

0 1 1 0 1 0

0 0 1 1 1 1

Truth table for the proposition “~ p  ~ q”

(Inverse proposition of proposition “ p q ”)

(iii) The truth table for the Contrapositive (~ q  ~ p) of the proposition “ p q ” is as follows:

p q ~ p ~ q p →q ∼q →∼p

1 1 0 0 1 1

1 0 0 1 0 0

0 1 1 0 1 1

0 0 1 1 1 1

2.5 SUMMARY:

In this lesson some types of Statements namely: Tautology, contradiction and Contingency

were studied along with some examples. Later equivalence of Statements or Formulas were

introduced. For better understanding of the reader some examples were provided. Finally,

the concepts Converse, inverse, and contrapositive of the given statements were introduced

and the truth tables related to these concepts were calculated for the convenience of the

reader.

2.6 TECHNICAL TERMS:

Tautology

(Tautology is a statement expression which has truth value ‘T’ for all possible values of the

statement variables involved in the expression.)

Contradiction (A contradiction (or absurdity or Fallacy) is a statement expression whose truth

value is always false).

Contingency

 (A statement expression that is neither a tautology nor a contradiction is called a

contingency).

Converse:

 (For any statement formula p q , the statement formula q p is called as the converse of

the statement p q). .

Inverse (or opposite):

 (For any statement formula p q , the statement formula ~p  ~q is called the inverse (or

opposite) of p q).

Advanced Discrete Mathematics 2.9 Types, Equivalences, Implications…

Contrapositive

 (For any statement formula p q , the statement formula ~q  ~p

 is called as the Contrapositive of p q).

2.7 SELF ASSESSMENT QUESTIONS:

(i). Write down the state table for the statement [p  (p  q)] p and find out whether it

is tautology or contradiction or contingency (Ans: tatualogy)

(ii). Let m be a fixed positive integer. Consider the two statements:

 a: m is an odd number

 b: m + 1 is an even number

Show that a and b are equivalent

(iii). Write down the Contrapositive of the following statement.

“If Lakshmana have Rs.200/- with him, then he will spend Rs. 150/- for his brother

Bharatha”.

(iv). Construct the truth tables for converse, inverse and Contrapositive of the statement

(pq).

2.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph

Theory, Prentice Hall India Ltd. New Delhi, 2014 (second edition) ISBN-978-81-203-

4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,

1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-

9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

Prof. Dr. Bhavanari Satyanarayana

LESSON - 3

NORMAL FORMS

OBJECTIVE:

 To understand Normal Forms.

 To obtain Normal Form of a given expression.

 To identify different types of notations

 To understand some technique in forming the truth tables.

STRUCTURE

3.1 Introduction

3.2 Normal Forms.

3.3 Summary

3.4 Technical Terms

3.5 Self Assessment Questions

3.6 Suggested Readings

3.1. INTRODUCTION

In this Lesson, we study some important concepts: Normal Forms, Disjunctive Normal

forms, Conjunctive Normal Forms, Principle disjunctive Normal Forms, Principle

Conjunctive Normal Forms. For the convenience of readers we included necessary examples.

3.2. NORMAL FORMS

Suppose that n is a positive integer, P1, P2,...Pn are the atomic statements (or variables) and A

(P1, P2,...Pn) is a statement formula. We know that each Pi have truth value T (or 1) or F (or

0). Hence the truth table for (P1, P2,...Pn) have 2n values. So we can form the truth table for

A(P1, P2,...Pn) with 2n rows.

 If for all 2n values of (P1, P2,...Pn) the truth value of A(P1, P2,...Pn) is T (or 1) then the

statement formula is said to be identically true. In other words, we say that A(P1, P2,...Pn) is a

tautology.

 If for all 2n values of (P1, P2,...Pn) the truth value of A(P1, P2,...Pn) is F (or 0) then the

statement formula A(P1, P2,...Pn) is said to be identically false. In other words, we, we say

that A(P1, P2,...Pn) is a contradiction.

 If the truth value of A(P1, P2,...Pn) is True (T or 1) for atleast one of the truth values of (P1,

P2,...Pn) then A(P1, P2,...Pn) is said to be satisfiable.

Centre for Distance Education 3.2 Acharya Nagarjuna University

3.2.1. Decision Problem

Suppose a statement formula is given, and we have to find whether it is a tautology or

contradiction of satisfiable. This problem of determining (in a finite number of steps)

whether the given statement formula is a tautology (or) a contradiction (or) satisfiable is

named as a decision problem.

 So every decision problem in the statement calculus has a solution because we can decide

this by forming a truth table for the given statement formula.

 Now we study different forms (of a given statement formula) called as normal forms

(i). Disjunctive Normal Form (in short, DNF)

(ii). Conjunctive Normal Form (in short, CNF)

(iii). Principal Disjunctive Normal Form (in short, PDNF)

(iv). Principal Conjunctive Normal Form (in short, PCNF)

3.2.2. Disjunctive Normal Form (DNF or D.N.F or dnf)

Let X1, X2,...Xn be n given atomic variables and 1 2 nX ,X ,...X (or ~X1, ~X2,... ~Xn) are the

negations of X1, X2,...Xn respectively.

Product (or meet, ) of some elements from  1 2 n1 2 nX ,X ...X ,X ,X ...X is called as an elementary

product.

Sum (or join, ) of some elements from  1 2 n1 2 nX ,X ...X ,X ,X ...X is called as elementary sum.

For example, i 1 531i j 3 4 2 n 1 2 4X ,X X , X X X , X X ... X , X X X X X         are some elementary

products.

 1 3 1 2 41 2 4 5 1 2 n 3 5X , X X , X X X , X X ... X , X X X X X          are some elementary sums.

A statement formula which is equivalent to a given statement formula and which is of the

form “a sum of elementary products” is called as Disjunctive Normal Form (DNF) of the

given statement formula.

3.2.3 How to find DNF

Suppose the given statement formula is A(P1, P2,...Pn), and we wish to find its DNF.

If it is already in the form: sum of elementary products then it is already in DNF.

If it is not in the form of DNF then we use some known results or formulas or axioms step by

step to get DNF. Most of the cases when ‘’ presents, we use the known formula / result:

 PQ  7 P  Q. [that is P Q].

Also we use known laws like: distributive laws, demorgan laws, Commutative and

associative laws, and so on. One can observe in the next coming example.

Advanced Discrete Mathematics 3.3 Normal Forms

3.2.4. Example: Find DNF of X  (XY)

Solution: X (X Y) 

 X (7X Y)   [Since PQ  7 P  Q, a known result]

    X (7X) X Y    [by distributive law]

 Now    X 7X X Y   is the sum of two elementary product terms X 7X and X Y . Hence

   X 7X X Y   is the DNF of the given statement formula  X X Y  .

3.2.5. Conjunctive Normal Form (CNF or C.N.F. or c.n.f. or cnf):

A statement formula which is equivalent to a given statement formula and which is of the

form “a product of elementary sums” is called as Conjunctive Normal Form (CNF) of the

given statement formula.

3.2.6. Example: Find CNF for the statement formula given by X  (XY)

Solution:

  X X Y 

  X X Y   [Since PQ  7 P  Q, a known result].

The obtained form  X X Y  is a product of two sums: X and X Y .

So it is in CNF. Hence  X X Y  is a CNF for the given statement  X X Y  .

3.2.7. Principal Disjunctive Normal Form (PDNF) (or sum of products canonical

form).

 Suppose P1, P2, ..., Pn are n statement variables. The expression * * *

1 2 nP P ... P   where *

iP is

either Pi or ~Pi is called a minterm. It is clear that there exist 2n minterms.

The expression * * *

1 2 nP P ... P   , where *

iP is either Pi or ~Pi is called a maxterm. It is clear that

there exist 2n maxterms.

Let P, Q, R be the three variables.

Then the minterms are:

P  Q  R, P  Q  ~ R, P  ~ Q  R, P  ~ Q  ~ R,

~ P  Q  R, ~ P  Q  ~ R, ~ P  ~ Q  R, ~ P  ~ Q  ~ R,

For a given statement formula, an equivalent statement formula which is in the form

“disjunction (or sum or join) of minterms” is known as its Principal Disjunctive Normal Form

(PDNF) (or sum of products canonical form).

Centre for Distance Education 3.4 Acharya Nagarjuna University

3.2.8. Example: Find PDNF for  X Y .

Solution:    X Y X 1 Y 1     (since A  1 = A for all A)

    X Y Y Y X X        
   

 (since A A 1 )

        X Y X Y Y X Y X          
   

 (by distributive law)

        X Y X Y X Y X Y        [By commutative law].

     X Y X Y X Y     

(since A A A  , idempotent law)

 Now we got the form      X Y X Y X Y     which is the PDNF for  X Y .

3.2.9. Note: (i). To find the PDNF of the given statement formula, there is a method named

as ‘Black box method’.

For convenience we use ~p or P to denote negation of the statement p.

(ii). If there are three atomic variables p, q, r, then we use the notation given by the following

table:

Binary Notation Expression

0 0 0 p q r

0 0 1 p q r

0 1 0 p q r

0 1 1 p q r

1 0 0 p q r

1 0 1 p q r

1 1 0 p q r

1 1 1 p q r

 We understand that p q r is the product term (or related expression) for 000; pq r is the

related expression for 110.

(iii). Statements and related equivalent binary forms for three statement variables P, Q, R

given below.

P  Q  R (or PQR, the product of P, Q, R) (equivalent binary notation is 111),

P  Q  ~ R (binary notation is 110), P  ~ Q  R (binary notation is 101),

P  ~ Q  ~ R (binary notation is 100), ~ P  Q  R (011),

 ~ P  Q  ~ R (010), ~ P  ~ Q  R (001), ~ P  ~ Q  ~ R (000),

3.2.10. Black Box Method (to find PDNF)

Suppose that A(X1, X2, ...Xn) is the given statement formula where X1, X2, ...Xn are atomic

statement variables and each atomic statement variable may attain its value either 0 or 1 (that

is, False or True).

Advanced Discrete Mathematics 3.5 Normal Forms

Form the truth table for A(X1, X2, ...Xn) which contains 2n rows.

This truth table determines the PDNF, simply by adding all the product terms that occurs

when A(X1, X2, ...Xn) takes Value 1.

3.2.11. Example:

Find PDNF for the given statement “P  Q” by Black Box Method (or by using truth tables)

Solution: First we form the truth table for PQ.

 Or

P Q
P 

Q

T T T

T F F

F T T

F F T

Observe the column under PQ , there are three 1’s in the column.

The 1’s are in 1st row, 3rd row and forth row only.

Consider the 1st row. In this first row P & Q have truth values 1 and 1 respectively. So the

related product term is PQ (or 11).

 Consider the 3rd row. In the third row, the truth values of P and Q are 0 and 1 respectively.

 So the related product term is P .Q (or 01).

Consider the 4th row. In this forth row, the truth values of P and Q are 0 and 0 respectively.

So the related product term is P Q (or 00).

The sum of these three terms, that is “11v 01v 00” is the PDNF.

 So the required PDNF is PQ P Q P Q  (in detail      P Q P Q P Q    ).

3.2.12. Example: Find PDNF for the given statement  X Y (by Black Box Method)

 (Compare this problem with example 1.6.8)

Solution: First we form truth table for the given statement  X Y .

X Y X ∨X Y

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1

Truth table for  X Y

P Q
P 

Q

1 1 1

1 0 0

0 1 1

0 0 1

Centre for Distance Education 3.6 Acharya Nagarjuna University

 Observe the column for  X Y . There are three 1‘s in first row, second row and forth

row.

The product term related to row–1 is X Y .

Consider row–2. The product term related to this row–2 is X Y (because the truth values of x

and y are 0 and 1 respectively).

Consider row–4. The product term related to row–4 is X Y (because the truth values of x and

y are 1 and 1 respectively)

 Therefore the PDNF is

 X Y X Y X Y   or      X Y X Y X Y    

3.2.13. Principal Conjunctive Normal Form (PCNF)

For a given statement formula, an equivalent formula consisting of the conjunction (product)

of maxterms is known as the Principal Conjunctive Normal Form (PCNF) (or product of

sums canonical form).

To find PCNF (by using truth table or through PDNF) of the given statement formula p.

Step 1: Suppose the given statement formula is p.

Step 2: Find the complement (that is the negation) of p.

Step 3: Find the PDNF for the complement of p (we may use black box method or some other

method)

Step 4: Required PCNF of p = complement of (PDNF of (complement of p))

 = ~ (PDNF(~ p)).

3.2.14. Example: Find the PCNF of the given statement formula F = X Y .

Solution: We follow the method given in 3.2.13.

Step 1: The given statement formula is

  F X Y 

Step 2: Now we have to find F (the complement (or the negation) of F).

~ F = ~ (X Y) = (~ X)  Y.

 Step 3: In this step we find the PDNF for F X Y 

X Y X X Y

0 0 1 1

Advanced Discrete Mathematics 3.7 Normal Forms

0 1 1 1

1 0 0 0

1 1 0 1

Truth table for  X Y

 As in the above example 3.2.11, we get that

PDNF of        F X Y X Y X Y     

Step 4:    PCNF F PDNF F

      X Y X Y X Y     

      X Y X Y X Y     

 (by demorgan laws)

      X Y X Y X Y     

    X Y X Y   

 (since A A A  , called as idempotent law).

3.2.15. Example

Show that the principal conjunctive normal form (PCNF) of the formula

    p q r p q r            is π (1, 2, 3, 4, 5, 6) (Here we use standard notation π for

product).

Solution: Given formula is

    p q r p q r           

    p q r p q r            [Since pq  ~pq]

    p q r p q r            [Since pq  ~pq]

        p q p r p q p r              [By Demorgan laws]

        p q r r p r q q p q r r p r q q                             

 [since x  (~ x) = o, and x  o = x]

            p q r p q r p r q p r q p q r p q r                 

    p r q p r q     

            p q r p q r p q r p q r p q r p q r                  is the

principal conjunctive normal form of given statement formula.

Centre for Distance Education 3.8 Acharya Nagarjuna University

Now by the known representation, we have

1. Can be represented as p q r (001)

2. Can be represented as p q r (010)

3. Can be represented as p q r (011)

4. Can be represented as p q r (100)

5. Can be represented as p q r (101)

6. Can be represented as p q r (110).

In Binary notation, 001 stands for 1 (because if xyz is a binary form, then the equivalent

number (with respect to 10) is [(x multiplied by 4) + (y multiplied by 2) + (z multiplied by 1

)].

For binary number 010, is equal to 2; 011 is equal to 3; 100 is equal to 4; 101 is equal to 5;

110 is equal to 6.

 Therefore, the principal conjunctive normal form of the given formula can be represented

as π (1, 2, 3, 4, 5, 6).

 The Solution is complete.

3.3 SUMMARY:

In this lesson, we studied some important forms of statement formulas namely Disjunctive

Normal form (DNF), Conjunctive Normal form (CNF), Principal Disjunctive Normal form

(PDNF), Principal Conjunctive Normal form (PCNF).We included sufficient number of

examples for the training of the readers.

3.4 TECHNICAL TERMS:

Disjunctive Normal Form (DNF):

A statement formula which is equivalent to a given statement formula and which is of the

form “a sum of elementary products” is called as Disjunctive Normal Form (DNF) of the

given statement formula.

Conjunctive Normal Form (in short, CNF):

A statement formula which is equivalent to a given statement formula and which is of the

form “a product of elementary sums” is called as Conjunctive Normal Form (CNF) of the

given statement formula.

Principal Disjunctive Normal Form (in short, PDNF):

For a given statement formula, an equivalent statement formula which is in the form

“disjunction (or sum or join) of minterms” is known as its Principal Disjunctive Normal Form

(PDNF) (or sum of products canonical form).

 Principal Conjunctive Normal Form (in short, PCNF):

For a given statement formula, an equivalent formula consisting of the conjunction (product)

of maxterms is known as the Principal Conjunctive Normal Form (PCNF) (or product of

sums canonical form).

Advanced Discrete Mathematics 3.9 Normal Forms

3.5 SELF ASSESSMENT QUESTIONS:

(i). Find the principal conjunctive normal Form of the statement formula  ~ p q

 .

 [Ans:      ~ p q ~ p q p q    ]

(ii). Find the principal conjunctive normal Form of the statement formula  ~ p q

 . [Ans:      p ~ q ~ p q ~ p ~ q    ] of

3.6 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph

Theory, Prentice Hall India Ltd, New Delhi, 2014 (second edition) ISBN-978-81-

203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,

1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-

9780367367237 .

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

Prof. Dr. Bhavanari Satyanarayana

 LESSON- 4

THEORY OF INFERENCE, AND PREDICATE

LOGIC

OBJECTIVE:

 To know the concept Inference Theory.

 To understand the Meaning of Predicate, 2-place predicate.

 To identify different types of Predicates

 To have proper understanding of different connectives.

 To develop skills in solving the problems

 To Learn the consistency, validity of the statements.

STRUCTURE

4.1 Introduction

4.2. Theory of Inference for Statement Calculus.

4.3. Consistency of premises and indirect method of proof

4.4 Predicate.

4.5 m-place Predicate.

4.6 Connectives

4.7 Statement Functions, and Variables

4.8 Summary

4.9 Technical Terms

4.10 Self Assessment Questions

4.11 Suggested Readings

4.1 INTRODUCTION:

In Lessons 1,2 and 3, we studied atomic statements and statement formulas. In this Lesson,

we study: Theory of Inference for Statement Calculus; Consistency of premises and indirect

method of proof; Predicates; m-place Predicates; and Connectives, Statement Functions,

and Variables. In the inference theory, all the premises and conclusions are statements. If

any two statements have common feature, then we are unable to express the common feature.

In order to study the common feature statements, the concept “predicate” is useful. The logic

related to the analysis of predicates is called as predicate logic.

4.2. THEORY OF INFERENCE FOR STATEMENT CALCULUS:

Logic gives the rules of inference, or principles of reasoning. The theory deal with these rules

is called as inference theory. This theory is concerned with the inferring of a a statement

(called as conclusion) from the given hypothesis (or certain statements, called as premises)

 The process of deriving the conclusion from the set of given statements (or premises) by

using the accepted rules, and known results, is known as deduction or a formal proof. In the

formal proof, at any stage, the rule of inference used in the derivation may be acknowledged.

 The conclusion obtained by using the rules of inference is named as Valid Conclusion; and

the argument involved is named as Valid Argument.

Centre for Distance Education 4.2 Acharya Nagarjuna University

4.2.1. Tautology

If A and B are two statement formulas, then we say that “B logically follows from A”

(or “B is a valid conclusion (or consequence) of the premise A”) if and only if AB is a

tautology (that is, AB).

4.2.2. Validity using truth table

Let m, n be positive integers. Suppose P1, P2, ..., Pn are n variables appearing in the m

premises H1, H2, ..., Hm and in the conclusion C.

Suppose that all the possible combinations of truth values are assigned to P1, P2, ..., Pn and

also suppose that the truth values of H1, H2, ..., Hm and C are entered in the truth table.

We say that C follows logically from the premises H1, H2, ..., Hm if and only if

H1 H2  ... Hm C.

This can be checked from the truth table using the following procedure:

1. Observe the rows in which C has the truth value F.

2. In every such row (that is the row for which the value under C is F) if at least one of the

values of H1, H2, ..., Hm is F then the conclusion is valid.

4.2.3. Example: Show that the conclusion C: ~P follows from the premises

 H1: ~ P  Q, H2: ~ (Q  ~ R) and H3: ~ R.

Solution: Given Conclusion and premises are C: ~ P, H1: ~ P  Q, H2: ~ (Q  ~ R)

and H3: ~ R.

P Q R H1 H2 H3 C

1 1 1 1 1 0 0

1 1 0 1 0 1 0

1 0 1 0 1 0 0

1 0 0 0 1 1 0

0 1 1 1 1 0 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

0 0 0 1 1 1 1

The rows (1, 2, 3, and 4) in which C has the truth values 0 (that is, F) has the situation that at

least one of H1, H2, H3 has truth value F. Thus C logically follows form the premises H1, H2,

and H3.

Advanced Discrete Mathematics 4.3 Theory of Inference…

4.2.4. Rules of Inference

In the following, we mention the three rules of inference.

Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by any

one or more of the preceding formulas in the derivation.

Rule CP: If we can derive S and R and a set of premises then we can derive R  S from the

set of premises alone.

4.2.5. Some Implications were listed in the following:

 I1 : p  q  p

 I2 : p  q  q

 I3 : p  p  q

 I4 : q  p  q

 I5 : p p q 

 I6 : q  p  q

 I7 : p q p 

 I8 : p q q 

 I9 : p, q  p  q

 I10 : p, p q q  [disjunctive syllogism]

 I11 : p, p  q  q [modus ponens]

 I12 : q, p q p  [modus tollens]

 I13 : p  q , q  r  p  q [hypothetical syllogism]

 I14 : p  q, p  r, q  r  r [dilemma]

4.2.6. Some Equivalences

 E1 : p p [double negation]

 E2 : p  q  q  p

 E3 : p  q  q  p

 E4 : (p  q)  r  p  (q  r)

 E5 : (p  q)  r  p  (q  r)

 E6 : p  (q  r)  (p  q)  (p  r)

 E7 : p  (q  r)  (p  q)  (p  r)

 E8 : p q p q  

 E9 : p q p q  

 E10 : p  p  p

 E11 : p  p  p

 E12 :  r p p r  

 E13 :  r p p r  

(Simplification)

(addition)

Centre for Distance Education 4.4 Acharya Nagarjuna University

 E14 :  r p p T  

 E15 :  r p p F  

 E16 : p q p q  

 E17 : p q p q  

 E18 : p q q p  

 E19 :    p q r p q r    

4.2.7. Example: Prove that r  (p  q) is a valid conclusion from the given

 premises p  q, q  r, p  m and m .

Solution: The given four premises (P) are p  q, q  r, p  m and m .

 {1} (1) p  m Rule P

 {2} (2) m Rule P

 {1,2} (3) p Rule T, (1), (2) and I12.

 {4} (4) p  q Rule P

 {1,2,4} (5) q Rule T, (3), (4) and I10.

 {6} (6) q  r Rule P

 {1,2,4,6} (7) r T, (5), (6) and I11.

 {1,2,4,6} (8) r  (p  q) T, (4), (7) and I9.

We arrived to the conclusion that r  (p  q).

4.2.8. Example: Show that the conclusion C: ~ P follows from the premises

 H1: ~ P  Q, H2: ~ (Q  ~ R) and H3: ~ R.

Solution: We get

 (1) ~ R Rule P (assumed premise)

 (2) ~ (Q  ~ R) Rule P

 {2} (3) ~ Q  R Rule T

 {3} (4) R  ~ Q Rule T

 {4} (5) ~ R  ~ Q Rule T

 {1, 5} (6) ~ Q Rule T

 (7) ~ P  Q Rule P

 {7} (8) ~ Q  ~ P Rule T

Advanced Discrete Mathematics 4.5 Theory of Inference…

 {6, 8} (9) ~ P Rule T

 Hence C logically follows from H1, H2 and H3.

4.2.9. Example: Prove or disprove the conclusion given under from the following axioms.

 “If Socrates is a man, Socrates is mortal”. Socrates is a man.

Therefore Socrates is mortal.

Solution: The argument is valid because the argument follows the pattern of Modus ponens.

 Consider the argument

 p: Socrates is a man.

 q: Socrates is mortal.

 p  q: If Socrates is a man, then Socrates is mortal.

 The modus ponens is

p q

p

q





 Hence the conclusion q : “Socrates is mortal” is true.

4.3. CONSISTENCY OF PREMISES AND INDIRECT METHOD OF PROOF:

A set of m statement formulas H1, H2, ...Hm is called as consistent if the conjunction

(H1, H2...Hm) has truth value “T” (or 1) for some assignment of the truth values to the

atomic variables appearing in the statement formulas H1, H2, ...Hm. In other words, in the

truth table, there exist at least one 1 under the column for (H1, H2...Hm).

 If H1, H2...Hm is false for every assignment of the truth values of the automic variables

(that is (H1, H2...Hm) is a contradiction) appearing in the statement formulas H1, H2,

...Hm then we say that H1, H2, ...Hm are inconsistent.

We may also say that a set of formulas H1, H2, ...Hm are inconsistent if their conjunction

 (H1, H2...Hm) implies a contradiction, that is,

 H1, H2...Hm  R R

where R is any statement formula. Note that R R is a contradiction for any formula R.

We use this concept a procedure called “proof by contradiction” (or indirect method of

proof).

4.3.1. Indirect Method of Proof

In order to prove that a conclusion C follows logically from the given statements (that is,

premises) H1, H2, ..., Hm , we assume that C is FALSE and consider ~C as an additional

premise. If H1  H2  ...  Hm ~C is a contradiction, then we conclude logically that “C

follows logically from the premises H1, H2, ..., Hm.”.

Centre for Distance Education 4.6 Acharya Nagarjuna University

4.3.2. Example Show that ~ (P  Q) follows from ~ P  ~ Q.

Solution: For this problem, the conclusion is ~ (P  Q). We have to consider the negation

of this conclusion as an additional premise.

So we assume that ~ (~ (P  Q)) as an additional premise. Then

 (1) ~ (~ (P  Q)) Rule P

 {1} (2) P  Q Rule T

 (3) P Rule T

 (4) ~ P  ~ Q Rule P

 {4} (5) ~ P Rule T

 {3, 5} (6) P  ~ P Rule T

 We know that P  ~ P is a contradiction. Hence by the indirect method of proof ~(P  Q)

follows logically from ~ P  ~ Q.

4.3.3. Example:

“If there was a party, then catching the train was difficult. If they arrived on time then

catching the train was not difficult. They arrived on time. Therefore there was no party.”

Show that the statement constitutes a valid argument.

Solution: Suppose that

 p: There was a party

 q: Catching the train was difficult.

 r: They arrived on time.

 Here, the conclusion is “there was no party” (that is, p).

So we have to prove that p follows from the premises p  q, r q and r.

 (1) r Rule P

 (2) r q Rule P

 {1, 2} (3) q Rule T

 (4) p  q Rule P

 {4} (5) q p Rule T

 {3, 5} (6) p Rule T

4.3.4 Example:

Using indirect method (or proof by contradiction) show that 2 is not a rational number.

Solution: The conclusion is that p: “ 2 is not a rational number”.

Advanced Discrete Mathematics 4.7 Theory of Inference…

We have to consider not p, that is “7p : 2 is a rational number”.

So suppose that 2 is a rational number.

Since 2 is a rational number, we have that
a

2
b

 where a, b are two integers with gcd (a,

b) = 1 and b  0.

Squaring on both sides, we get  
22

2

a
2

b


2

2

a
2

b
 

 2 22b a  …..(1)

[2 divides the left hand side, and so the right hand side also]

22 divides a

 2 divides a …..(2)

 a 2k  for some integer k

 2 2a 4k  …..(3)

 By (1) & (3) we get 2 22b 4k

 2 22b 4k 

 2 2b 2k 

 2 divides b …..(4)

 Now 2 divides ‘a’ and ‘b’ [from (2), (4)]

 This is a contradiction to the fact gcd (a, b) = 1.

 Hence the conclusion is true (that is 2 is not a rational number).

4.3.5. Example:

Prove that the following set of premises are not inconsistent (that is, consistent).

 p q, q  r, ~ (p  r), p v r  r

Solution: We have to prove that the given set of premises (four statements:

 p q, q  r, ~ (p  r), p v r  r) is not inconsistent.

This is equal to say that the meet () (or the product) of all these four premises has truth

value T in at least one case.

Consider the case when (p, q, r) = (F, T, T). That is, the truth values of p, q, r are equal to F,

T, T respectively. In this case, the truth values of p q, q  r, ~ (p  r) and p v r  r are all

equal to T. Hence the product (that is, meet) of all the four premises also have truth value T.

This says that the set of four premises is consistant. The proof is complete.

Hence the given set of premises p q, q  r, ~ (p  r), p v r  r will not form a set of

inconsistent formula.

Centre for Distance Education 4.8 Acharya Nagarjuna University

4.4 PREDICATE LOGIC:

Logic that deals with predicates is named as Predicate Logic.

4.4.1 Predicate

In the statement “Satya is beautiful”, the part “is beautiful” is called a predicate. The part

“Satya” is a noun or subject or object. Every predicate describes some property of one or

more objects.

In symbolizing the statements, in general, we use capital letters for predicates, and small

letters for individuals or objects.

Let us consider the following two atomic statements:

1. Satya is beautiful.

2. Lakshmi is beautiful.

 If we express these two statements by symbols, we need to have two different symbols.

We introduce some symbol to denote “is beautiful”. Also a method to join it with symbols

that denotes the names of individuals.

4.4.2. Examples:

 (i). Consider the statements:

1. Satya is beautiful.

2. Lakshmi is beautiful.

 We denote the predicate “is beautiful” by the capital letter B (here, B first letter of the

word (predicate) beautiful). We use symbol “s” for “satya” and “l” for “Lakshmi”.

In symbolic form, the statements (1) and (2) will be written as B(s) and B(l) respectively.

In general, any statement of the form “p is Q” where Q is the predicate and p is noun (or

subject) is denoted by Q (p).

Thus B(s) denotes the statement “Satya is beautiful”.

B(l) denotes the statement “Lakshmi is beautiful”.

(ii). Consider the statements:

1. Mallikarjun is a student.

2. Gnyana is a student.

Observe the given statements. The predicate involved in these statements I “is a student”.

We denote this predicate “is a student” by the capital letter “S”, and the nouns (or subjects)

Mallikarjun by small letter “m” and Gnyana by the small letter “g”.

Now S(m) means “m is S” (that is, Mallikarjun is a student); S(g) means “Gnyana is a

student”.

4.4.3. 2–place predicate

In the Example 4.4.2, we considered the atomic statement “Mallikarjun is a student”. Here

the predicate “is a student” have one and only one noun (or subject) namely “Mallikarjun”.

So it is named as 1–place predicate.

 Now consider the statement “Mallikarjun is taller than Gnyana”. In this statement, “is

taller than” is a predicate and it deals with two names (or nouns or individuals). This

Advanced Discrete Mathematics 4.9 Theory of Inference…

predicate is called as 2–place predicate.

A predicate associated with two names (or nouns) is called as 2–place predicate.

In symbolic form we write T(m, g) where T denotes the predicate “is taller than”, m denotes

Mallikarjun, and g denotes Gnyana.

4.4.4. Example:

Consider the following atomic statement:

 Andhra Pradesh is to the north of Tamilnadu.

In the given statement, “is to the north of” is the predicate, we denoted by the capital letter

“N”.

We denote Andhra Pradesh is by “a”, and the Tamilnadu is denoted by “t”.

So N(a, t) means “Andhra Pradesh is to the north of Tamilnadu”.

Thus this predicate is a 2–place predicate.

4.5. m-PLACE PREDICATE:

A predicate associated with m names (or nouns) (where m is a positive integer) is called an

m–place predicate. In order to extent this definition to m = 0, we say that a predicate is a 0–

place predicate if no names are associated with the predicate.

4.5.1. Example:

Consider the following statement: “Satya sits between Mallikarjun and Gnyana”.

In the given statement, “Sits between” is the predicate, we denote this predicate by B.

We denote Satya, Mallikarjun and Gnyana by s, m, g respectively. Then B(s, m, g) denotes

the given statement. In the given statement, the predicate is associated with three names (or

individuals). Hence this predicate is a 3–place predicate.

4.6. CONNECTIVES:

The known connectives (,, 7) that were used in statement logic, can be used to form

compound statements.

 “Satya is beautiful” and “Lakshmi is beautiful”.

 “Satya is beautiful” or “Lakshmi is beautiful”.

 These sentences were were represented by

 B(s)  B(l)

 B(s)  B(l)

 “The painting is Red” is denoted by R(p).

 “The painting is not Red” is denoted by R(p) or ~R(p) or R(p)

4.6.1. Example:

Represent the statement “Rama is handsome and Sita is beautiful” by predicate logic.

Solution: Suppose “H” denotes the predicate “is handsome”; and “B” denotes the predicate

Centre for Distance Education 4.10 Acharya Nagarjuna University

“is beautiful”. Suppose the symbols “r” and “s” denotes the subjects Rama and Sita,

respectively.

Then H(r) denotes the statement “Rama is handsome”, and B(s) denotes “Sita is beautiful”.

So H(r)  B(s) denotes the statement “Rama is handsome and Sita is beautiful”.

In terms of predicate logic, the given statement is represented by

 H(r)  B(s).

4.7. STATEMENT FUNCTIONS, AND VARIABLES:

An expression consisting of a predicate symbol and an individual variable is said to be a

simple statement function of one variable.

Such a statement function becomes a statement when the variable is replaced by the name of

the object.

As an illustration, take the predicate B (“is beautiful”) and “s” (the name Satya). As we

know, B(s) means “s is beautiful” (that is, Satya is beautiful).

In place of Satya let us use a variable x. We write B(x), the notation for “x is beautiful”. In

place of x we may substitute “Lakshmi” (or l), then we get B(l) which means “Lakshmi is

beautiful”. Now we consider B(x) as a statement and x is a place holder (or variable) B(x) is a

statement function.

4.7.1. Example

In the statement function (here a 2-place predicate) T(x, y) (means x is taller than y), where

T denotes the predicate “is taller than”, x and y are place holders in the 2–place predicate

T(x, y).

If we replace, x by Mallikarjun, and y by Gnyana then T (m, g) denotes the statement.

 Mallikarjun is taller than Gnyana.

Note that T(x, y) is a statement function and x, y are variables.

4.7.2. Note

Let B be the predicate “is beautiful”.

Consider the following three statements.

 B(s): Satya is beautiful.

 B(g): Gnyana is beautiful.

 B(l): Lakshmi is beautiful.

Here B(s), B(g), B(l) all denote statements, but they have common form (feature, beautiful).

If we write B(x) for “x is beautiful”, then B(s), B(g), B(l) and others with same form can be

obtained from B(x) by replacing x by the suitable name s, g, l, …

We note that B(x) is not a statement but it result in many statements when we replace the

variable x by appropriate names (or subjects or nouns).

Advanced Discrete Mathematics 4.11 Theory of Inference…

4.7.3. Combined Statements and Connectives:

Consider the given two statement functions in one variable x.

 B(x): x is beautiful.

 M(x): x is mortal.

Now

 B(x)  M(x) denotes “x is beautiful and x is mortal”.

 B(x)  M(x) denotes “x is beautiful or x is mortal”.

 7B(x) (or B(x)) denotes “x” is not beautiful”.

Suppose T(x, y) denotes “x” is taller than y” .

This is a predicate in two variables x and y.

Then T(x, y) (or T(x,y)) denotes that “x” is not taller than y”.

4.7.4. Example:

Construct the statement function in predicate calculus for the given statement “x” is rich and

y is tall”.

Solution: We know that “x is rich” is denoted by R(x); and “y is tall” is denoted by T(y).

 So “R(x)  T(y)” denotes the statement “x is rich and y is tall”, where R and T are

predicates “is rich” and “is tall” respectively; and x and y are variables.

4.8 SUMMARY:

In Lessons 1,2 and 3, we studied atomic statements and statement formulas. In this Lesson,

we studied: Theory of Inference for Statement Calculus; Consistency of premises and

indirect method of proof; Predicates; m-place Predicates; and Connectives, Statement

Functions, and Variables. In the inference theory, all the premises and conclusions are

statements. If any two statements have common feature, then we are unable to express the

common feature. In order to study the common feature statements, the concept “predicate” is

useful. The logic related to the analysis of predicates is called as predicate logic.

In this Lesson, we also studied the concepts: 2-place predicate, m-place predicate. A

predicate associated with m names (or nouns) (where m is a positive integer) is called as m–

place predicate. Some examples related to 2-place predicate, and 3-place predicate were

included. Connectives used in predicate logic were introduced and explained in detail for the

better understanding of the reader. Statement functions and variables in predicate logic were

explained.

4.9 TECHNICAL TERMS:

Predicate

[In the statement “Satya is beautiful”, the part “is beautiful” is called a predicate].

Predicate Logic

[Logic that deals with predicates is named as Predicate Logic].

Centre for Distance Education 4.12 Acharya Nagarjuna University

2- place predicate

[A predicate associated with two names (or nouns) is called as 2–place predicate].

3-place predicate

[A predicate associated with three names (or nouns) is called as 3–place predicate].

m-place predicate

[A predicate associated with m names (or nouns) (where m is a positive integer) is called

as m–place predicate].

Simple statement function of one variable.

[An expression consisting of a predicate symbol and an individual variable is said to be a

simple statement function of one variable].

4.10 SELF ASSESSMENT QUESTIONS:

(i). Show that the following set of premises is inconsistent.

     p q r ,s q ~ r ,p s    

(ii). Prove that S  R is tautologically implied by (P  Q), (P  R), (Q  S).

(iii). Represent the statement “Rama is King” by predicate logic.

[Ans: K(r) represents the given statement. Here K denotes “is a king”, and r denotes Rama].

 (iv). Represent the statement “Rama is a brother of Lakhmana” by predicate logic.

[Ans: B(r,l), where B denotes the predicate “a brother of”, r,l denotes Rama, Lkhmana,

repectively].

(v). Represent the statement “Rama is boy and Sita is girl” by predicate logic.

 [Ans: B(r)  G(s), where B and G are predicates “is a boy”, and “is a girl” respectively].

(vi). Represent the statement “Rama is standing between Bhima and Krishna” by predicate

logic.

[Ans: S(r,b,k) where S denotes the predicate “is standing between”, r, b, k denotes the

nouns Rama, Bhima, Krishna respectively].

(vii). Represent the statement “Rama is sitting between Bhima and Krishna” by predicate

logic.

[Ans: S(r,b,k) where S denotes the predicate “is sitting between”, r, b, k denotes the nouns

Rama, Bhima, Krishna respectively].

Advanced Discrete Mathematics 4.13 Theory of Inference…

4.11. SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph

Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-

203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,

1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-

9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Bhavanari Satyanarayana

LESSON - 5

QUANTIFIERS

OBJECTIVE:

 To know the concept Quantifier.
 To identify different types of Quantifiers.
 To Learn the validity of the Statements
 To have proper understanding of different Quantifiers.
 To develop skills in solving the problems.

STRUCTURE:

5.1 Introduction
5.2 Quantifier
5.3 The Universe of discourse
5.4 Free and bounded variables
5.5 Summary
5.6 Technical Terms
5.7 Self Assessment Questions
5.8 Suggested Readings

5.1 INTRODUCTION:

 In the previous Lessons, we discussed regarding the Statements, connectives,
tautology, contradiction, truth tables, etc. In this Lesson we added some more knowledge by
presenting new concept “Quantifier”. In this lesson finally we presented the concepts: free
variable and bounded variable. We included some examples that are needed to understand
the new concepts.

5.2. QUANTIFIERS:

 We know about the atomic statements and predicates. In this Lesson, we introduce the
notion quantifiers (“all” and “some”). These concepts provide some extension to the earlier
knowledge. The word “all” is said to be “universal quantifier”; and the word “some” is said
to be “existential quantifier”. We use the words “all” and “some” in several sentences such
as “All men are mortal”, “Some men are not professors”.

5.2.1. Universal Quantifier

The quantifier “all” (which is the universal quantifier) is denoted by (x) or x

 We place this symbol just before the statement function. For example, consider the
statement functions:

 B(x): x is beautiful

 W(x): x is a woman

 Then (x) (W(x)  B(x)) denotes “for all x, if x is a women then x is beautiful”(In other
words, All women are beautiful).

Centre for Distance Education 5.2 Acharya Nagarjuna University

Now we can understand that the statement “for all x, if x is a women then x is beautiful” (In
other words, All women are beautiful) is denoted by “(x) (W(x)  B(x))”.

 Also we have to note that x is arbitrary. In place of the variable, we may use any other
variable such as y or z. We get the same meaning.

So (x) (W(x)  B(x); and (y) (W(y)  B(y)) are having equivalent meaning (because x, y
are just variables) (x) (W(x)  B(x)) may be denoted by x (W(x)  B(x)).

5.2.2. Example:

Represent the statement “For any x and for any y, if x is richer than y, then x is not poorer
than y” by predicate logic.

Solution: Consider the following 2–place predicates (two in number):

 R(x, y): x is richer than y.

 P(y, x): y is poorer than x.

From the second statement we get that “P(x, y): x is not poorer than y”.

Now we got the third statement.

 P(x, y): x is not poorer than y.

By using the Universal quantifiers (x) and (y), we can write the forth statement:
 “(x)(y) (R(x, y)  P(x, y))”.

This forth statement means that

 “For any x and for any y, if x is richer than y, then x is not poorer than y”.

This statement may also be denote as follows:

 x y (R(x, y)  P(x, y)).

Note that in the above, we obtained representation of the statement “For any x and for any y,
if x is richer than y, then x is not poorer than y” in terms of predicate logic.

5.2.3. Existential Quantifier

We know that the word “some” is called as the existential quantifier. This existential
quantifier is denoted by “”. This also have the meaning “for some” or “there exists at least
one”.

If we write “x” , this have the meaning “for some x” or “there exists at least one x”.

The symbol x (or  unique x) is used for “there is a unique x”, or “there exists unique x”).

As in case of for all, we place this symbol also, just before the statement functions.

5.2.4. Example:

Consider the following five statement functions:

 M(x): x is a man, where M denotes the predicate “is a man”.

 C(x): x is clever, where C denotes the predicate “is clever”.

 I(x): x is an integer, where I denotes the predicate “is an integer”.

 Advanced Discrete Mathematics 5.3 Quantifiers

 E(x): x is even, where E is the predicate “is even”.

 P(x): x is prime, where P is the predicate “is prime”.

 Then

  x M(x) symbolizes “There exists a man”

  x (M(x)  C(x)) symbolizes “There are some men who are clever”

  x (I(x)  E(x)) symbolizes “Some integers are even” or “There are some integers

which are even”

 x (E(x)  P(x)) symbolizes “There exists unique even number which is a prime

number”.

5.2.5. Example:

Represent the statement “There is a man who is clever” by predicate logic.

Solution: Consider the two statements given below;

M(x): x is a man, where M denotes the predicate “is a man”.

C(x): x is clever, where C denotes the predicate “is clever”.

M(x)  C(x) represents “x is a man, and x is clever”.

Therefore  x (M(x)  C(x)) is the symbolic form of the statement “There is a man who is
clever”

5.2.6. Example:

Represent the statement “there is only one prime number which is also an even number” by
predicate logic.

Solution: Consider the two statements given below;

 P(x): x is a prime number, where P is the predicate “is aprime number”.

.

 E(x): x is an even number, where E is the predicate “is an even number”.

.

 (E(x)  P(x)) symbolizes “There exists a prime number which is an even number”.

x (E(x)  P(x)) symbolizes “There exists unique (or only one) prime number which is also
an even number”.

5.3 THE UNIVERSE OF DISCOURSE:

Variables that were quantified may belong to certain sets.

That particular set is called as the universe of discourse or the domain or simply universe.

In the statement “M(x) : x is a man”, the variable x relates to the set of all men. Here the set
of all men is the universe of discourse.

In the statement “E(x) : x is an even number”, then x relates to all the even numbers. Here
the universe is the set of integers.

Centre for Distance Education 5.4 Acharya Nagarjuna University

So, the universe may be, the class of human beings, or numbers (real, complex, and rational)
or some other objects. The truth value of a statement function containing quantifier depends
upon the universe.

5.3.1. Example

Suppose Q(x) is the predicate that

 Q(x): x is less than 10.

Consider the statements (x) Q(x) and  x Q(x).

Let us define the sets U1, U2 and U3 as follows:

 U1: {–1, 0, 1, 2, 4, 6, 8};

 U2: {3, –2, 12, 14, 10} and

 U3: {10, 20, 30, 40}.

By considering different cases, let us observe whether the statements are true / false with
respect to U1, U2 and U3 ,treating as universes.

(i) The statement (x) Q(x) is true in U1 because the statement function Q(x)

 [that is, x < 10] is true for every x in U1. In this case (x) Q(x) is True.

(ii) The statement (x) Q(x) is not true in U2 [because there is the element 12 in U2 such that

12 is not less than 10]. Hence, in this case (x) Q(x) is False.

(iii) The statement (x) Q(x) is not true in U3., because 20 is not less than 10.

(iv) The statement “ x Q(x)” is true in U1 and U2 [because there exist atleast one element

in U1 (also in U2) which is less than 10].

(v) The statement “ x Q(x)” is not true (that is, false) in U3 [because there is no element in

U3 which is less than 10].

5.3.2. Example

Suppose that “the set of integers” is the universe of discourse.

Determine the truth values of the following sentences:

1. (x) (x2  0)

2. (x) (x2–5x + 6 = 0)

3. (x) (x2–5x + 6 = 0)

4. (y) ( x (x2 = y))

Solution: 1. For any integer x, we know that x2  0. Hence the statement (x) (x2  0) is true
when “the set of integers” is the universe of discourse.

2. Consider the integer 1. If we substitute x = 1, then x2–5x + 6 = 2 which is not equals to
0. So the statement x2–5x + 6 = 0 is not true with x = 1.

Hence the given statement (x) (x2–5x + 6 = 0) is not true if we consider “the set of integers”

 Advanced Discrete Mathematics 5.5 Quantifiers

as universe of discourse.

3. Consider the integer 2. If we substitute x = 2, then x2–5x + 6 = 0. So the statement x2–
5x + 6 = 0 is true with x = 2, and 2 is an integer.

Hence the given statement (x) (x2–5x + 6 = 0) is true if we consider “the set of integers” as
universe of discourse.

4. Consider the integer y = 2. We know that there is no integer x such that x2 = y.

So the statement x2 = y is not true if y = 2 and x is an integer.

Hence the given statement (y) ( x (x2 = y)) is not true if we consider “the set of integers” as
the universe of discourse.

5.3.3. Example:

Find out the quantifiers for the following statements where predicate symbols denote.

 K(x): x is two-wheeler

 L(x): x is a scooter

 M(x): x is manufactured by Bajaj

(a) Every two wheeler is a scooter.

(b) There is a two wheeler that is not manufactured by Bajaj.

(c) There is no two wheeler manufactured by Bajaj that is not a scooter.

(d) Every two wheeler that is a scooter is manufactured by Bajaj.

Solution: Given that

 K(x): x is a two-wheeler

 L(x): x is a scooter

 M(x): x is manufactured by Bajaj

(a). We have to find out quantifier for the statement:

 “Every two wheeler is a scooter”.

The expression (K (x)  L(x)) denotes the statement that “two wheeler is a scooter”.

Therefore

 (x) (K (x)  L(x))

represents the expression that “Every two wheeler is a scooter”.

(b). We have to find out the quantifier for the statement:

 “There is a two wheeler that is not manufactured by Bajaj”.

The expression 7M(x) denotes the statement that “x in not manufactured by Bajaj”.

The expression K(x)  7M(x) denotes the statement that “x is a two wheeler and not
manufactured by Bajaj”.

Hence “x (K(x)  7M(x))” is the expression that states that “there exists x which is a two
wheeler and not manufactured by Bajaj”.

Centre for Distance Education 5.6 Acharya Nagarjuna University

(c). We have to find out the quantifier for the statement

“There is no two wheeler manufactured by Bajaj that is not a scooter”.

The expression “ L (x)” denotes the statement that “x is not a scooter”.

The expression “K(x)  M(x)  L (x)” denotes the statement that “x is a two wheeler

manufactured by Bajaj that is not a scooter”.

Therefore the quantifier expression  (x (K(x)  M(x)  7 L(x)) denotes the statement that

“There is no two wheeler manufactured by Bajaj that is not a scooter”.

(d). We have to find out the quantifier for the statement “Every two wheeler that is a scooter
is manufactured by Bajaj”.

The expression “K(x)  L(x)” denotes the statement that “x is a two wheeler that is a
scooter”.

So the expression (x) ((K(x)  L(x)  M(x)) denotes the statement that “Every two wheeler
that is a scooter is manufactured by Bajaj”.

5.4 FREE AND BOUNDED VARIABLES:

Suppose that (x) p(x) or  x p(x) is a part of a given formula. Such a part of the form (either

(x) p(x) or  x p(x)) is called as x–bound part of that given formula.

The formula p(x) either in “(x) p(x)” or in “ x p(x)” is called as the scope of the quantifier.

5.4.1. Example

Suppose the universe of discourse is the set of integers.

Consider the statement that

 p(x) : 2x 0

 We know that 2x 0 for all integers

 So p(x) is true for all x in the universe of discourse.

 We know that we write this fact as (x) p(x).

 This (x) p(x) is a x–bound part.

5.4.2. Example:

Suppose the universe of discourse is the set of all complex numbers.

Consider the statement that

“If y is a complex number, then there exist a complex number x such that x2 = y.

The expression (y) ( x (x2 = y)) denotes the statement that “If y is a complex number, then
there exist a complex number x such that x2 = y.

Now the expression  x (x2 = y) is x–bound part of “(y) ( x (x2 = y))”.

 Advanced Discrete Mathematics 5.7 Quantifiers

5.4.3. Definitions

(i) Any occurrence of in an x–bound part of a formula is called as bound occurrence of x.

(ii) Any occurrence of x (or a variable) which is not a bound occurrence is called a free
occurrence.

5.4.4. Example

(i). Consider the formula

  x (p(x)  q(x))

 Here the scope of ( x) is p(x)  q(x).

 Hence in “ x (p(x)  q(x))”, all the occurrences of x are bound occurrences.

 (ii) If we consider a statement r(x), then the occurrence of x in r(x) is a free occurrence.

5.4.5. Examples:

(i). Consider the statement:

 Lakshmi is beautiful.

The symbolic representation is B(l). It is clear that the statement formula B(x) means x is
beautiful, where x is a variable. Note that in “B(x)” there is no quantifier. Hence the
occurrence of the variable x in “B(x)” is a free occurrence.

(ii). Consider the statement:

 “All birds can fly”.

 Now we symbolize this statement. Write

 B(x): x is a bird

 F(x): x can fly

It is clear that “(x) (B(x)  F(x))” denotes the statement “All birds can fly”.

 In this “(x) (B(x)  F(x))”, all occurrences of x are bound occurrences.

5.4.6. Example:

Symbolize “All the people respects selfless leaders”.

Solution: Let us consider the following three statements

 P(x): x is a person

 S(x): x is a selfless leader

 R(x, y): x respects y

 Now the required symbol

 The expression S(y)  R(x, y) denotes the statement that “If y is a selfless leader then x

respects y”.

 The expression “(y) (S(y)  R(x, y))” denotes the statement that “x respects every selfless

leader y”.

Centre for Distance Education 5.8 Acharya Nagarjuna University

The expression “p(x)  (y) (S(y)  R(x, y))” denotes the statement that “person x respects

every selfless leader y”.

The expression “(x) [p(x)  (y) (S(y)  R(x, y))” denotes the statement that “All the people

respects selfless leaders”.

5.4.7. Note:

The negations of some frequently used, important statement functions were presented in the
following table.

Statement function Negation
 x F(x) (x) (~F(x))
(x) F(x)  x (~F(x))

 x (~ F(x)) (x) F(x)
(x) (~F(x))  x F(x)

5.4.8. Example:

Find the negation of the given expression: “(x) (E(x)  S(x))

Solution: Suppose F(x): “E(x)  S(x)”.

Now the given expression is of the form “(x) F(x)”, where F(x): “E(x)  S(x)” .

 From the above table, the negation of “(x) F(x)” is  x (~F(x)).

 It is clear that ~F(x) is the negation of E(x)  S(x).

We know that the negation of (E(x)  S(x)) is “E(x)  ~S(x)”.

 Now observe that  x (~F(x)) is equivalent to  x (E(x)  ~S(x)).

This states that “ x (E(x)  ~S(x))” is the negation of the given expression

“(x) (E(x)  S(x))”.

5.4.9. Example

Find out the quantifiers of the following statements where predicate symbols denotes,

 F(x): x is fruit

 V(x): x is vegetable and

 S(x, y): x is sweeter than y

(a) Some vegetables are sweeter than all fruits

(b) Every fruit is sweeter than all vegetables

(c) Every fruit is sweeter than some vegetables

(d) Only fruits are sweeter than vegetables

 Advanced Discrete Mathematics 5.9 Quantifiers

Solution:

(a). Consider the given statement “Some vegetables are sweeter than all fruits”.

The expression F(y)  S(x, y) denotes that “x is sweeter than the fruit y”.

The expression “(y) (F(y)  S(x, y))” denotes that “x is sweeter than y for all fruits y”.

So  x [V(x)  ((y) (F(y)  S(x, y))] is the required predicate formula.

(b). We have to symbolize “Every fruit is sweeter than all vegetables”.

The expression V(y)  S(x, y) denotes the statement “x is sweeter than the vegetable y”.

The expression (y) (V(y)  S(x, y)) denotes the statement

“x is sweeter than all vegetables y”.

Therefore the required predicate formula is “(x) [F(x)  (y) (V(y)  S(x, y))]”.

(c). We have to symbolize “Every fruit is sweeter than some vegetables”.
The expression  y (V(y)  F(x, y)) denotes “there exists a vegetable y such that x in sweeter
than y”.

Hence the required predicate formula is “(x) [F(x)   y (V(y)  F(x, y))]”.

(d). We have to symbolize the given statement “only fruits are sweeter than vegetables”.

In other words, this statement can be written as “if x is sweeter than all vegetables, then x is
a fruit”.

The expression “(y)(V(y)  S(x, y))” denotes the statement “x is sweeter than all
vegetables”.

Hence the required predicate formula is [(y) (V(y)  S(x, y))] F(x).

5.5 SUMMARY:

 In the previous Lessons, we discussed regarding the Statements, connectives,
tautology, contradiction, truth tables, etc. In this Lesson we added some more knowledge by
presenting new concept “Quantifier”. The concepts Universal Quantifier, Existential
Quantifier and Universe of Discourse were explained and some related examples were
presented. Finally we presented the concepts: free variable and bounded variable, and
included sufficient number of examples that are needed for clear understanding of the new
concepts.

5.6 TECHNICAL TERMS:

Quantifiers

(“all” and “some”).

Universal Quantifier
The quantifier “all” is called as the universal quantifier.

Existantial Quantifier
The quantifier “some” is called as the universal quantifier.

Centre for Distance Education 5.10 Acharya Nagarjuna University

The Universe of discourse.

A variable that was quantified may belongs to certain set, called as the universe of discourse
or the domain or simply universe.

Bound Variable.

In the expressions “(x) p(x)” and “ x p(x)”, the variable x is called as bound variable.

Free Variable
In the expression like “p(x)”, there is no bound such as “for all”, or “there exists”, such a
variable is called as free variable.

5.7 SELF ASSESSMENT QUESTIONS:

1. Find out the quantifiers for the following statement

“Every integer is a rational number”.

Ans: (x) (I(x)  Q(x)) is the required expression where I(x) denotes “x is an integer”, and
Q(x) denotes “x is a rational number”.

 2. Find out the quantifiers for the following statement

“Every integer is not an even integer”.

Ans: “(x) (I(x)  ~E(x))” is the required expression where I(x) denotes “x is an integer”,
and E(x) denotes “x is an even integer”.

3. Find out the quantifier for the statement:

 “Every two wheeler is a scooter”.

The expression (x) (K (x)  L(x)) denotes the statement that “every two wheeler is a
scooter”.

4. Find out the quantifier for the statement:
“All dogs are not cats”.

“(x) (D(x)  ~C(x))” is the required expression where D(x) denotes “x is a dog”, and C(x)
denotes “x is a cat”.

5. Symbolize “All Dogs are Animals” using the quantifier.

Ans: The expression (x) (D(x)  A(x)) denotes “All dogs are animals”, where D(x): x is a
dog and A(x): x is an animal.

.

6. Symbolize “Some horses are black”

Ans: The expression  x (H(x)  B(x)) denotes “there exists a horse which is black (or)
some horses are black”, where H(x): x is a horse, and B(x): x is black.

 Advanced Discrete Mathematics 5.11 Quantifiers

5.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd. , New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Bhavanari Satyanarayana

LESSON - 6

INFERENCE THEORY FOR PREDICATE
CALCULUS

OBJECTIVE:

 To know more about predicate calculus.
 To understand the Rules of Inference.
 To identify the validity of arguments.
 To Learn the additional rules of inference.
 To develop skills in solving the problems by using rules of inference.

STRUCTURE:

6.1 Introduction
6.2 Universal Specification
6.3. Universal Generalization
6.4 Existential Specification
6.5 Existential Generalization
6.6. Formulas with more than one Quantifier
6.7 Summary
6.8 Technical Terms
6.9 Self Assessment Questions
6.10 Suggested Readings

6.1 INTRODUCTION:

In earlier lessons, we have already discussed the “inference theory for the statement
calculus”. We know that the method of derivation related to the predicate formulas uses the
rules of inference that discussed for the statement calculus. In addition to the rules of
inference discussed pfor the statement calculus, in derivations, we also use certain additional
rules (or principles) that are given below: Universal Specification (US, in short), Universal
Generalization (UG, in short). Existential Specification (ES, in short). Existential
Generalization (EG, in short).

6.2. UNIVERSAL SPECIFICATION (US):

If (x) p(x) is true, then the universal quantifier can be dropped to obtain “p(c) is true”, where
c is an arbitrary object in the universe of discourse.

6.2.1. Example:

Consider the following statements.
All women are mortal.
Lakshmi is a woman.
Here the universe is the set of all women.

 M(x): x is mortal
 (x) M(x): all women are mortal (as x is in the universe).

Centre for Distance Education 6.2 Acharya Nagarjuna University

Since “Lakshmi is a woman”, we have that “Lakshmi” is in universe of discourse.
So by using Universal Specification we may replace x by “Lakshmi”,.
If we replace x by Lakshmi in “x is mortal”, we get that “Lakshmi is mortal”.
Note that in this example, we used US.

6.3. UNIVERSAL GENERALIZATION (UG):

If P(c) is true for all c in the universe of discourse, then the universal quantifier may be
prefixed to obtain (x) P(x).

6.3.1. Example:

Suppose that U = {1, 2, 3, 4} is the universe of discourse.
Suppose that p(x) : “x2  50”.

It is clear that for every x U the statement x2  50 is true.

 If x = 1 then x2 = 1  50, and so p(1) is true

 If x = 2 then x2 = 4  50, and so p(2) is true

 If x = 3 then x2 = 9  50, and so p(3) is true

 If x = 4 then x2 = 16  50, and so p(4) is true

Now we verified that P(c) is true for all c in the universe U of discourse.
Hence, by Universal Generalization, we can write “(x) P(x)”.

6.3.2. Example:
Prove the following statement (transitivity) by using the rules of Inference:
 (x) (P(x)  Q(x))  (x) (Q(x)  R(x))

  (x) (P(x)  R(x))

Solution: Given statements (premises) are:

 (x) (P(x)  Q(x)) Premise–1

 and

 (x) (Q(x)  R(x)) Premise–2

Assuming premise–1 and premise–2 we have to obtain the conclusion “(x) (P(x)  R(x))”.

Derivation:

(x) (P(x)  Q(x)) P (Premise–1)

P(c)  Q(c) US and (1)

(x) (Q(x)  R(x)) P (Premise–2)

Q(c)  R(c) US and (3)

P(c)  R(c) [(2), (4) and Inference Rule (hypothetical Syllogism)]

Advanced Discrete Mathematics 6.3 Inference Theory …

(x) (p(x)  R(x) UG and (5)

Hence we get the conclusion that (x) (p(x)  R(x).

So we proved the given statement that

 [(x) (P(x)  Q(x))  (x) (Q(x)  R(x))]  (x) (P(x)  R(x)).

6.3.3. Example

Consider the following statements.
 All men are selfish. (Premise–1)
 All kings are men. (Premise–2)
 Prove that all kings are selfish.

Solution: Suppose that
 M(x): x is man.
 K(x): x is King.
 S(x): x is selfish.
 (x) (M(x)  S(x)) is Premise–1; and

(x) (K(x)  M(x)) is Premise–2.

The derivation is as follows.

(x) (M(x)  S(x)) P (Premise–1)

M(c)  S(c) US, (1)

(x) (K(x)  M(x)) P (Premise–2)

K(c)  M(c) US, (3)

K(c)  S(c) [(2), (4) and Inference Rule hypothetical syllogism]

(x) (K(x)  S(x)) UG and (5)

Hence we get that “All Kings are selfish”.

6.3.4. Example
Prove or disprove the validity of the following argument by using the rules of inference.
 All men are warriors. (Premise–1)
 All Kings are men. (Premise–2)
 Therefore All Kings are warriors.

Solution: Let
 M(x): x is a man.
 K(x): x is a king
 W(x): x is a warrior

(x) (M(x)  W(x)) (Premise–1),

(x) (K(x)  M(x) (Premise–2).

Now the derivation is as follows:

(x) (M(x)  W(x)) P (Premise–1)

Centre for Distance Education 6.4 Acharya Nagarjuna University

M(c)  W(c) US and (1)

(x) (K(x)  M(x)) P (Premise–2)

K(c)  M(c) US and (3)

K(c)  W(c) [(2), (4), and Inference rule: hypothetic syllogism]

(x) (K(x)  W(x)) UG and (5)

Now we got the conclusion that “All kings are warriors”.

6.3.5. Example

Using predicate logic, Rules of Inference, show that the following argument is valid.
Every wife argues with her husband.
X is a wife.
Therefore, X argues with her husband.

Solution: Write
 W(x): x is a wife.

 A(x, h): x argues with her husband, where h denotes husband.

(x) (W(x)  A(x, h)): Every wife x argues with her husband h.

 (x) (W(x)  A(x, h)) Premise–1

 W(x): x is a wife Premise–2

Derivation:

W(x) P (Premise–2)

(x) (W(x)  A(x, h)) P (Premise–1)

W(x)  A(x, h) US and (2)

A(x, h) [(1), (3) and modus ponens]

Therefore, A(x, h): x argues with her husband.

So we conclude that if X is a wife, then x argues with her husband.

6.4. EXISTENTIAL SPECIFICATION (ES):

If  x P(x) is assumed to be true, then P(c) is true for some element c in the universe of
discourse.

6.5. EXISTENTIAL GENERALIZATION (EG):

If P(c) is true for some element c in the universe of discourse, then we can write “ x P(x)” is
true.

Advanced Discrete Mathematics 6.5 Inference Theory …

 6.5.1. Example
Prove that  x (r(x)  q(x))  ( x r(x))  ( x q(x)) by using the rules of inference.

Solution: The given premise is  x (r(x)  q(x)).

We have to prove the conclusion that ( x r(x))  ( x q(x)).

The derivation is as follows:

 x (r(x)  q(x)) P (Premise)

r(y)  q (y) ES and (1)

r (y) [(2) and Inference Rule (Simplification)]

q (y) [(2) and Inference Rule (Simplification)]

 x r (x) EG and (3)

 x q (x) EG and (4)

 x r (x)   x q (x) [(5), (6), and Inference Rule:I9]

6.5.2. Example

Prove that “  x (M(x))” follows logically from the premises.

 (x) (A(x)  M(x)) and  x A(x)

Solution: The given two premises are

 (x) (A(x)  M(x) Premise–1

  x A(x) Premise–2

 We have to get the conclusion:  x (M(x)).

Derivation:

 x A(x) P (Premise–2)

A(c) ES and (1)

(x) (A(x)  M(x)) P (Premise–1)

A(c)  M(c) US and (3)

M(c) [(2), (4) and Inference rule (Modus Ponens)]

 x M(x) EG and (5)

6.5.3. Example

Explain with an example:
 (x) [E(x)  B(x)] need not be a conclusion form  x E(x) and (x) B(x)
Solution:
Let U = {1, 2} be the universe of discourse.
Write:

Centre for Distance Education 6.6 Acharya Nagarjuna University

 E(x): x is even
 B(x): x is odd

Since 1 is an element of U such that 1 is odd, it is true that  x B(x) (by EG).

Since 2 is an element of U such that 2 is even, it is true that  x E(x) (by EG).

 E(x)  B(x): means x is both even and odd.

 If x = 1 then x is not both even and odd.

 If x = 2 then x is not both even and odd.

 So there is no element in the universe U which is both even and odd.

So E(x)  B(x) is False for any x in the universe.

Therefore (x) (E(x)  B(x)) is False.

Hence we got that “(x) (E(x)  B(x)) need not be a conclusion from  x E(x) and  x B(x)”.

6.6. FORMULAS WITH MORE THAN ONE QUANTIFIER:

In the above parts, we studied the formulas with one quantifier. One may consider the
formulas with more than one quantifier.
If we consider a 2–place predicate formula “P(x, y)” where x, y are variables, then the

following different cases may exists.

 (x) (y) P(x, y)

 (x) (y) P(x, y)

 (x) (y) P(x, y)

 (x) (y) P(x, y)

 (y) (x) P(x, y)

 (y) (x) P(x, y)

 (y) (x) P(x, y)

 (y) (x) P(x, y)

The logical relation of the above mentioned predicate formulas was presented in

diagrammatic form in the following:

Advanced Discrete Mathematics 6.7 Inference Theory …

6.7 SUMMARY:

In earlier lessons, we have already discussed the statement calculus, and inference theory for
the statement calculus. We know that the method of derivation is solving the problems
related to the predicate formulas uses the rules of inference that discussed for the statement
calculus. In addition to those rules of inference discussed for the statement calculus, in
derivations, we also use certain rules (or principles). The names of the rules are: Universal
Specification, Universal Generalization, Existential Specification, and Existential
Generalization. These four additional rules were discussed and related examples were
presented for better understanding of the reader.

6.8 TECHNICAL TERMS:

Universal Specification (US)
If (x) p(x) is true, then the universal quantifier can be dropped to obtain “p(c) is true”, where
c is an arbitrary object in the universe of discourse.

Universal Generalization (UG)
If P(c) is true for all c in the universe of discourse, then the universal quantifier may be
prefixed to obtain (x) P(x).

Existential Specification (ES)
If  x P(x) is assumed to be true, then P(c) is true for some element c in the universe of
discourse.

Existential Generalization (EG)
If P(c) is true for some element c in the universe of discourse, then we can write “ x P(x)” is
true.

6.9 SELF ASSESSMENT QUESTIONS:

1. Prove the following statement (transitivity) by using the rules of Inference:

 (x) (R(x)  S(x))  (x) (S(x)  T(x))

  (x) (R(x)  T(x))

2. Prove the validity of the following argument by using the rules of inference.
 All birds do have wings. (Premise–1)
 All eagles are birds. (Premise–2)
 Therefore eagles do have wings.

3. Prove that “(x) (M(x))” follows logically from the premises.

 (x) (A(x)  M(x)) and (x) A(x)

4. Using predicate logic, Rules of Inference, show that the following argument is valid.
Every husband argues with his wife.
X is a husband.
Therefore, X argues with his wife.

Centre for Distance Education 6.8 Acharya Nagarjuna University

5. Prove that  x [p(x)  q(x)]  [ x p(x)]  [ x q(x)]

6. Prove that r(x)  (x) q(x)  ( x) [r(x)  q(x)]

7. Test the validity of the argument
If a person is rich, he is happy.
If a person is happy, he lives long.
Therefore, Rich persons live long.
Ans: Valid

8. Test the validity of the following argument:
If there is a quarrel by students, the examinations will be postponed.
There was no quarrel by students
Therefore, the examination was not postponed.
Ans: Not Valid

6.10 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd, New Delhi, 2014 (second edition) ISBN-978-81-203-
4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,

1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
 Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
 9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Bhavanari Satyanarayana

STATE TABLES AND DIAGRAMS

OBJECTIVES:

 To understand the finite state
 To know how to construct state
 To draw the state diagrams of finite
 To learn concepts related to

STRUCTURE:

 7.1 Introduction
 7.2 Finite State Machines.
 7.3 State Tables and diagrams
7.4 Summary
7.5 Technical Terms
7.6 Self Assessment Questions
7.7 Suggested Readings

7.1 INTRODUCTION:

A finite-state machine (FSM) or
machine, is a mathematical model of computation
exactly one of a finite number of
state to another in response to some
transition. An FSM is defined by a list of its states, its initial state, and the inputs that trig
each transition. The behavior of state machines can be observed in many devices in modern
society that perform a predetermined sequence of actions depending on a sequence of events
with which they are presented.
products when the proper combination of coins is deposited,
steps is determined by the floors requested by riders,

A study of finite automaton is their applicability to the design of several common types of
computer algorithms and programs.

Let us now describe the operation of a finite automaton in more detail.

LESSON -7

STATE TABLES AND DIAGRAMS

state machine.
To know how to construct state tables.

state diagrams of finite state machine.
s related to finite state machine.

diagrams

) or finite-state automaton, or finite automaton, or simply a
model of computation. It is an abstract machine that can be in

exactly one of a finite number of states at any given time. The FSM can change from one
state to another in response to some inputs; the change from one state to another is called a

. An FSM is defined by a list of its states, its initial state, and the inputs that trig
The behavior of state machines can be observed in many devices in modern

society that perform a predetermined sequence of actions depending on a sequence of events
with which they are presented. Simple examples are vending machines, which dispense
products when the proper combination of coins is deposited, elevators, whose sequence of

s is determined by the floors requested by riders, traffic lights,

finite automaton is their applicability to the design of several common types of
and programs.

Let us now describe the operation of a finite automaton in more detail.

, or simply a state
that can be in

The FSM can change from one
the change from one state to another is called a

. An FSM is defined by a list of its states, its initial state, and the inputs that trigger
The behavior of state machines can be observed in many devices in modern

society that perform a predetermined sequence of actions depending on a sequence of events
, which dispense

, whose sequence of

finite automaton is their applicability to the design of several common types of

Centre for Distance Education 7.2 Acharya Nagarjuna University

Strings are fed into the device by means of an input tape, which is divided into squares, with
one symbol inscribed in each tape square (see figure). The main part of the machine itself is
a “black box” with innards that can be, at any specified moment, in one of a finite number of
distinct internal states. This black box - called the finite control - can sense what symbol is
written at any position on the input tape by means of a movable reading bead. Initially, the
reading head is placed at the leftmost square of the tape and the finite control is set in a
designated initial state.

7.2 FINITE STATE MACHINES:

Input: The various inputs applied at the input side of the model are the elements of an input

set, ℐ , also called the input alphabet.

Output: The various outputs generated at the output side of the model are the elements of an
output set O, also called the output alphabet.

Next state function  : ζ  ℐ  ζ is a function and

Output function  : ζ  ℐ O is a function.

7.2.1 Definition: An input-output machine is a system M = (ζ, ℐ, O, , )

where ζ is a finite set (called the set of states of the machine), ℐ is a finite set (called the

set of inputs (or input alphabet) of the machine), O is a finite set (called the output

alphabet),

 : ζ  ℐ  ζ is a function (called the next state function) and  : ζ  ℐ  O is a function

(called the output function).

7.2.2 Notation: (i) The non-negative integers denote successive instances of time;
(ii) at = the input to the i/o – machine (that is, input to the machine) at time t;

(iii) s(t) = state of the machine at time t;

 (iv) s(t + 1) = (s(t), at);

 (v) w(t) = output at time t;

 (vi) w(t) = (s(t), at) [Here  gives the current output].

7.2.3 Note: If we are not concerned about output only, then we may omit O and . In this
case, we may define a machine as follows:

7.2.4 Definition: A state machine M is (ζ, ℐ , ), where ζ is a finite set, ℐ is a finite

set and  is a function from ζ  ℐ to ζ . Here ζ, ℐ and  are called the set of states,

the set of inputs and the next state function, respectively.

Advanced Discrete Mathematics 7. 3 State tables and diagrams

7.2.5 Note: We use term machine to refer either an i/o-machine or state machine.

7.2.6 Example: (Parity-check machine): This machine is designed to show whether the
total number of 1’s in a finite sequence of 0’s and 1’s is whether even or odd (for
example, in the sequence 1100110010, the number of 1’s is 5 which is an odd number).
Now we define this machine mathematically as follows:

This machine has an input 0 or 1. So ℐ = {0, 1}.
States correspond to 'even' or 'odd'. So ζ = {Even, odd}.
We define  and  as follows:

(Even, 1) = odd, (Even, 0) = Even,
(odd, 1) = Even, (odd, 0) = odd,

(Even, 1) = 0, (Even, 0) = E,
(odd, 1) = E, (odd, 0) = 0.

Here we use the symbol ‘ 0 ’ for ‘odd ’, and the symbol ‘ E ’ for ‘even’ and so
 O = {0, E}.

Note that the last output gives the result.
Table for party check machine:

 (s, a) (s, a)
Input 0 1 0 1
States

EVEN

ODD

EVEN

ODD

ODD

EVEN

E

O

O

E

7.3 STATE TABLES AND DIAGRAMS:

In this section, we come to know how to form a table; and how to draw a diagram
representing a given input/output machine.

7.3.1 How to draw the directed graph for a given finite machine:

(i) The nodes of the graph are the states of the machine;
(ii) For every input ‘a’ and state s; define an arc that originates at the node ‘s’ and

terminates at the node (s, a).

(iii) Label the arc (described in (ii)) with input “a” followed by the output (s, a). The
arc is illustrated in the diagram.

a, (s, a)

s (s, a)

Centre for Distance Education 7.4 Acharya Nagarjuna University

7.3.2 Problem: Draw the directed graph for the parity-check machine.

Solution: Following the procedure given in 7.3.1, we get the following graph.

7.3.3 Note: (i) The directed graph obtained in the above problem (following the procedure
given in 7.3.1) is called the state-diagram of the given machine.
 (ii) If the state diagram is known, then we can write the state table and vice versa.

7.3.4 Problem: Draw the state diagram for the machine given by the table.

  
 0 1 0 1
s1 s1 s2 x y
s2 s2 s4 z x
s3 s3 s3 x y
s4 s1 s2 y z

Solution: Here the nodes are s1, s2, s3 and s4,

The state diagram is given by

7.3.5 Problem: Write the state table for the machine given by the state diagram.

(0, 0)
even

odd
1, E

0, E
1, 0

s4

s1

0, z

s2

s3

1, y

0, x

1, z 1, x

1, y
0, x

0, y

s1










0, 1

0, 1

1, 1

s3

1, 1

1, 1

0, 0

1, 1 0, 1

1, 1

0, 0

s2

s4

s5

Advanced Discrete Mathematics 7. 5 State tables and diagrams

Solution:

  
0 1 0 1

s1 s2 s2 0 1
 s2 s2 s3 1 1

s3 s5 s5 0 1
s4 s4 s1 1 1
s5 s5 s4 1 1

7.3.6 Problem: Construct a machine to add two given binary digits and draw its state
diagram.

Solution: (i) In the computation for the addition of two binary integers, corresponding digits
of the two integers are operated. For this computation, we start with the right most pair of
digits. So the corresponding digits of the given two binary integers are fed into the machine
simultaneously.

 (ii) If the number of the significant digits of the two given numbers are not equal, then we
use the symbol b (for blank) to fed into the machine. For example, suppose the given
numbers are 101 and 11. Then we fed (1, 1) at first step, (0, 1) at second step and (1, b) at the
third step.

 (iii) From the above, we can understand that the input alphabet is ℐ = {(x, y) /x, y {0, 1,
b} }.

(iv) The output alphabet is O = {0, 1}.

(v) The states of the machine correspond to carry.

 Therefore ζ = {s0, s1}, where s0 stands for the carry “0” and s1 stands for the carry “1” .

(vi) The state diagram to add two binary integers is given in the figure. In this diagram, we
eliminated numerous arrows by simply labeling a single arrow with various possible inputs
and corresponding outputs.

7.3.7 Example: How to get the sum of 101 and 11 from the above machine?

Step-(i): In the beginning, we suppose that the machine is at starting state s0. Now let us
start the procedure. Take the first right most digits of both the given numbers. They are 1, 1.
So we use (1, 1).

(0, 0), 1
(b, 0), 1
(0, b), 1
(b, b), 1

s0 s1

(1, 1), 0

(0, 0), 0
(b, b), 0
(0, b), 0
(b, 0), 0
(1, b), 1
(b, 1), 1
(0, 1), 1
(1, 0), 1

(1, b), 0
(b, 1), 0
(1, 1), 1
(0, 1), 0
(1, 0), 0

Centre for Distance Education 7.6 Acharya Nagarjuna University

Step-(ii): Fed the input (1, 1). Since the machine is at the state s0, the output is “0” and the
next state is s1 (this means, for the next step, the carry is “1”).

Step-(iii): Consider the second digits (from right) of the given two numbers. They arc 0, 1.
So fed (0, 1) into the machine. Then the output is “0” and the machine still lies in state s1
(see the diagram).

Step-(iv): Now we have to consider the third digits (from right) of the given numbers. The
given second number has only two digits. So we use b (blank) for the third place which is
not significant. So the input is (1, b). Since the machine is at state s1 when we fed input (1,
b), the output is “0” and machine is still in state s1.

Step-(v): Since the number of digits in the given numbers is not more than 3, the process is
completed here. To get the answer, consider the outputs in the order.

The answer is

1

0 0 0

Fina
l
carr
y

3rd
output

2nd
output

1st output

Therefore 101 + b11 = 1000

7.4 SUMMARY:

A finite-state machine (FSM) or finite-state automaton, finite automaton, or simply a state
machine, is a mathematical model of computation. It is an abstract machine that can be in
exactly one of a finite number of states at any given time. The FSM can change from one
state to another in response to some inputs; the change from one state to another is called a
transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger
each transition. In this lesson we have learned basic terminologies of a finite machine and
how to draw a state table corresponding to a digraph and vice-versa.

7.5 TECHNICAL TERMS:

Input:
Inputs applied at the input side of the model.

Output:
Outputs generated at the output side of the model and we denote output alphabet as O.

Next state function

A function which provides next state ( : ζ  ℐ  ζ is a function) is named as next state
function.

Output function

A function which provides the out put ( : ζ  ℐ  O is a function) is named as out put
function.

Advanced Discrete Mathematics 7. 7 State tables and diagrams

Input-output machine

An input-output machine is a system M = (ζ, ℐ, O, , )

where ζ is a finite set (called the set of states of the machine), ℐ is a finite set (called the
set of inputs (or input alphabet) of the machine), O is a finite set (called the output
alphabet),

 : ζ  ℐ  ζ is a function (called the next state function) and  : ζ  ℐ  O is a function
(called the output function).

7.6 SELF ASSESSMENT QUESTIONS:

1. Determine a state diagram for a machine that has input 0 or 1 and outputs the
remainder when the number of received 1's is divisible by 5.

Ans:

2. Draw the labeled digraphs for the machines given by the State table.

 0 1
s0 s0 s1
s1 s1 s2
s2 s2 s0

.
Ans:

0, 0

0, 4

0, 3

1, 3

1, 4

1, 1

0, 1

0, 2

1, 0

1, 2

s4

s1

s0

s2

s3

2

1

0

s0

1

0

0 s2

s1

Centre for Distance Education 7.8 Acharya Nagarjuna University

3. Draw the state table for the Finite machine represented by the digraph given below.

Ans:
 a b c
s0 s0 s0 s0
s1 s2 s3 s2
s2 s1 s0 s3
s3 s3 s2 s3

7.7 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi 2014 (second edition) ISBN-978-81-203-
4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.
UTM Springer, 1998.

Prof. Dr. S. Srinadh

c b

a, b, c
s0

a, c

b

s1

s3

b
s2

a

a, c

LESSON - 8

STATE HOMOMORPHISMS

OBJECTIVES:

 To understand state homomorphism
 To know state machine congruence

STRUCTURE:

8.1 Introduction
8.2 Dynamics
8.3. State homomorphisms
8.4 State Machine Congruence
8.5 Summary
8.6 Technical Terms
8.7 Self Assessment Questions
8.8 Suggested Readings

8.1. INTRODUCTION:

In this lesson, we define the notions: state homomorphism and state machine congruence and
prove some important theorems.

8.2. DYNAMICS

8.2.1 Note: Let X be a set.

(i) We define X* = the set of all finite sequences of elements from X.

 The elements of X* are called strings.

(ii) The binary operation “concatenation” on X* is defined as

 (x1x2 … xn).(y1y2 … yk) = z1z2 … zn+k, where zi = xi for 1  I  n ; and

zn+j = yj for 1  j  k (that is, (x1x2 … xn).(y1y2 … yk) = x1x2 … xny1y2 … yk).

(iii) The length 1(w) of the string w = x1x2 … xn is defined to be n.

It is clear that 1(w1ow2) = 1(w1) + 1(w2).

(iv) The operation “concatenation” is associative.

(v) Empty sequence is denoted by “e” , and we assume that e  X* with

woe = w = eow for all w  X*.

So X* has an identity element. Thus X* becomes a monoid.

Centre for Distance Education 8.2 Acharya Nagarjuna University

8.2.2 Note: Consider the state machine M = (ζ, ℐ, ).

(i) We define *: ζ  ℐ*  ζ as *(s, a) = (s, a) for all s  ζ and a  ℐ. If a1a2

… ak-1ak is in ℐ*, then we define

* (s, a1a2 … ak-1ak) =  (* (s, a1a2 … ak-1), ak). Here *(s, e) = s is a convention.

By the definition, it is clear that *: ζ  ℐ*  ζ is an extension of .

(ii) Sometimes we write (s)w to mean *(s, w) for w  ℐ*.

8.2.3 Example: Consider the machine given by the table.

Sates 

0 1

1 3 1

2 2 3

3 2 1

Here *(1, 00) = (*(1, 0), 0) (by definition of *)

 = ((1, 0), 0)

 = (3, 0) = 2.

Similarly, *(2, 00) = 2, and *(3, 00) = 2.

8.3 STATE HOMOMORPHISMS:

In this section we define state machine homomorphism and state machine congruence and
prove some important theorems.

8.3.1. Definition: Let M1 = (ζ1, ℐ, 1) and M2 = (ζ2, ℐ, 2) be state machines.

A function f : ζ1 ζ2 is called a state homomrphism of M1 into M2 if

 f(1(s1, a)) = 2(f(s1), a) for all s1  ζ1, and a  ℐ.

 If f is a bijection, then f is called a state isomorphism.

8.3.2. Problem: If f is a state homomorphism from M1 = (ζ1, ℐ, 1) into

M2 = (ζ2, ℐ, 2), then f(1
*(s, w)) = 2

(f(s), w) for all w  ℐ.

Proof: (The proof is by induction on the length of w, where w  ℐ*).

Advanced Discrete Mathematics 8.3 State Homomorphisms

Suppose w  ℐ* with 1(w) = 1.

Then f(1
(s, w)) = f(1(s, w)) (by the definition of )

 = 2(f(s), w) (since f is a state homomorphism)

= 2
(f(s), w) (by the definition of ).

Now we suppose the induction hypothesis.

That is, we suppose the result for all w  ℐ* with 1(w) = k-1.

Suppose w  ℐ* with 1(w) = k.

Then w = w0w1 with 1(w0) = k -1 and 1(w1) = 1.

Consider f(1
*(s, w)) = f(1

*(s, w0w1))

= f(1(1
(s, w0), w1)) (by the definition of )

= 2(f(1
*(s, w0)), w1) (since f is a state homomorphism)

= 2(2
*(f(s), w0), w1) (by the induction hypothesis)

= 2
(f(s), w0w1) (by the definition of )

 = 2
*(f(s), w) (since w = w0w1).

Hence the result is true for all w  ℐ*.

8.4 STATE MACHINE CONGRUENCE:

8.4.1. Note: Let M = (ζ, ℐ, ) be a state machine.

(i). For any subset P of ζ and a  ℐ, we define (P, a) : = {(s, a) / sP}.

(ii) If  is a partition of ζ, then we denote the class of the partition containing s by [s].

(iii) A partition  of ζ is said to be a state machine congruence if for each subset P in

 and each input a  ℐ, we have that the set (P, a) is contained in a unique class of the

partition . The class containing (P, a) is denoted by [(P, a)].

(iv) If  is a state machine congruence on M = (ζ, ℐ, ), then

M = (,ℐ, ), where  (P, a) = [(P, a)], is a machine.

8.4.2. Theorem: Let  be a state machine congruence on M = (ζ , ℐ, ). Then there

exists a state homomorphism f from M onto M = (, ℐ, ) given by f(s) = [s].

 Proof: Since  is a partition of ζ , we have that [s] is a unique class containing s.

Centre for Distance Education 8.4 Acharya Nagarjuna University

Therefore f : ζ   defined by f(s) = [s] is well defined.

Now it remains to show that f((s, a)) =  (f(s), a) (That is, [(s, a)] =  ([s], a)).

Since  is a machine congruence, by the definition of  we have that  ([s], a) =

[([s], a)] …. (1).

Since ([s], a) = {(x, a) / x  [s]}, we have that

(s, a)  ([s], a)

  [(s, a)] = [([s], a)]

  [(s, a)] =  ([s], a) (from (1))

So we have that [(s, a)] =  ([s], a) …… (2).

Therefore f((s, a)) = [(s, a)] (by the definition of f)

 =  ([s], a) (from (2))

 =  (f(s), a) (by the definition of f)

Now we have to show that f is onto.

For this, take P  .

Since P is an equivalence class, it is non-empty.

Let s  P. Since s is in the equivalence class P, we have that [s] = P.

Now f(s) = [s] = P.

This shows that f is onto. The proof is complete.

8.4.3. Theorem: Let f be a state homomorphism from the state machine M = (ζ, ℐ, )

onto the state machine M1 = (ζ1, ℐ, 1). Then there is a state machine congruence on M

such that M is isomorphic to M1.

Proof: Step-(i): In this step, we find out a partition of ζ.

Define x ~ y  f(x) = f(y) for all x, y  ζ.

Then ~ is an equivalence relation on ζ and the set  of all equivalence classes form a

partition for ζ.

Step-(ii): Now we show that  is a state machine congruence.

For this, take P  and ‘a’ be an input symbol.

Any two elements of (P, a) are of the form (s, a), (s1, a) where s, s 1  P.

Now s, s1  P  f(s) = f(s1).

Advanced Discrete Mathematics 8.5 State Homomorphisms

Then, f((s, a)) = 1(f(s), a) = 1(f(s
1), a) = f((s1, a)).

Therefore (s, a) ~ (s1, a), implies that (s, a) and (s1, a) belongs to the same

equivalence class.

Hence (P, a) is contained in one equivalence class.

This shows that  is a state machine congruence.

Step-(iii): Now we define mapping g : M M1.

For this, consider the machine M = (,ℐ, ).

Here the definition of  is  (p, a) = [(p, a)].

Define g :  ζ1, by g([s]) = f(s) for each class [s] .

Step-(iv): Now we show that the mapping g is well defined 1-1, and onto.

Let [s1], [s2] .

Now [s1] = [s2]  s1 ~ s2

  f(s1) = f(s2)

  g([s1]) = g([s2]).

This shows that g is well defined and 1-1.

To show that g is onto, let s* ζ1.

Since f is onto, f(s) = s* for some s.

Now g([s]) = f(s) = s*.

Hence g is onto.

Step-(v): Now we show that g is a state homomorphism.

Let [s]  and a  ℐ.

Now g( [s], a)) = g([(s, a)]) (by the definition of )

 = f ((s, a)) (by the definition of g)

 = 1(f(s), a) (since f is a homomorphism)

 = 1(g([s]), a) (by the definition of g).

Hence g is a state homomorhism.

Now we proved that g is a bijection and state homomorphism.

Hence M  M, (that is, M is isomorphic to M).

Centre for Distance Education 8.6 Acharya Nagarjuna University

8.5 SUMMARY:

In this lesson we have discussed the concepts state homomorphisms, state ismorphisms and
state machine congruences. Some theorems also included related to these concepts.

8.6 TECHNICAL TERMS:

1. State homomorphism

A function f : ζ1 ζ2 such that f(1(s1, a)) = 2(f(s1), a) for all s1  ζ1, and a  ℐ.

2. State isomorphism
If f is a bijection and a state homomorphism, then it is called as State ismorphism.

3. State machine congruence
 A partition  of ζ is said to be a state machine congruence if for each subset P in 

and each input a  ℐ, we have that the set (P, a) is contained in a unique class of the
partition .

8.7 SELF ASSESSMENT QUESTIONS:

1. Define state homomorphism.

2. Define state isomorphism.

3. Define state machine congruence

8.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.
UTM Springer, 1998.

Prof. Dr S. Srinadh .

LESSON - 9

INPUT / OUTPUT (I/O) – HOMOMORPHISMS
OBJECTIVES:
 To know i/o-homomorphism
 To understand distinguishable states
 To know the concept of reduced machine

Structure:

9.1. Introduction
9.2. Behaviour of the Machine.
9.3. Input-outpput (i/o.) Homomorphism
9.4 Summary
9.5 Technical Terms
9.6 Self Assessment Questions
9.7 Suggested Readings

9.1 INTRODUCTION:

In the beginning of this lesson we explain the concept behavior of the machine with respect to
a starting state. We explain the state output machine, input-output homomorphism. Few
theorems on these concepts were included.

9.2. BEHAVIOUR OF THE MACHINE:

9.2.1. Definition: (i). Let X and Y be two sets. A behavior from X to Y is a function

 : X* \ {e}  Y where X and Y are sets and e is the empty string in X*.

(ii) For a machine, by the term behavior from ℐ to O, we mean a function

 : ℐ* \ {e}  O.

9.2.2. Definition: Let M = (ζ, ℐ, O, , ) is an i/o–machine and s  ζ be a fixed state

(call it as starting state).

Define inductively a function  as follows:

s : ℐ* \ {e} O by s (a) = (s, a) for all a  ℐ.

s (w, a) = (*(s0, w), a) for all wa  ℐ* \ {e}.

Then s is a behavior from ℐ to O.

9.2.3. Note: Note that s(wa) is the last output when the input sequence wa is fed to
the machine with starting state s.

Centre for Distance Education 9.2 Acharya Nagarjuna University

9.2.4. Definition: A state output machine is an i/o-machine M = (ζ, ℐ, O, , ) such that

(s, a) = ((s, a)) for a function  form ζ to O.

The state output machine defined here is denoted by M = (ζ, ℐ, O, , ).

9.2.5. Note: If M is a state output machine, then

(s1, a1) = (s2, a2)  (s1, a1) = ((s1, a1) = ((s2, a2)) = (s2, a2).

9.2.6. Theorem: Let M = (ζ, ℐ, O, , ) be an i/o-machine. Then there exists a state

output machine M1 = (ζ1, ℐ, O, 1, ) and a one-one function f from ζ into ζ1 such

that s = f(s) for all s  ζ.

Proof: Step-(i): Write

 ζ1 = {
z

s
 / s  ζ and there exists t  ζ, a  ℐ such that (t, a) = s and

(t, a) = z}  {

s

 / s  ζ and there is no t  ζ and a  ℐ such that (t, a) = s}.

Define 1(
z

s
 , a) =

)a,s(

)a,s(




,

1(
z

s
 , a) = (s, a).

Then M1 = (ζ1, ℐ, O, 1, 1) is an i/o-machine.

Step-(ii): Fix some z0  O and define

 : ζ  O by (
z

s
) = z and (


s

) = z0.

Now 1(
z

s
, a) = (s, a) (by definition of ).

 = (
)a,s(

)a,s(




) (by the definition of )

 = (1(
z

s
 , a)) (by the definition of 1)

Therefore 1(
z

s
 , a) = (1(

z

s
 , a)) which implies

Advanced Discrete Mathematics 9.3 Input/output (i/o)…

 that M1 = (ζ1, ℐ, O, 1, ) is a state output machine.

Step-(iii): Define f : ζ  ζ1 as follows:

For s  ζ , choose some output z such that there exists

t  ζ and a  ℐ with (t, a) = s and (t, a) = z.

Then define f(s) =
z

s
 .

If no such output z exists, then define f(s) =

s

.

Now f(s1) = f(s2) 
1

1

z

s
 =

2

2

z

s

  s1 = s2. Therefore f is one-one.

Now it remains to show that s = f(s).

We prove this in the following steps 4, 5 and 6.

Step-(iv): To prove s = f(s), first we prove that

 1
*(f(s), wa) =

)a),w,s(*(

)wa,s(*




 ….. (1)

for all w  ℐ-*, a  ℐ. This proof is by induction on k, the length of wa.

If k = 1, then 1(wa) = 1

  w = e  wa = a.

Also (s, w) = s (since w = e).

Now 1
*(f(s), wa) = 1

*(f(s), a) (since w = e)

 = 1 (f(s), a) (since a  ℐ)

 = 1(
z

s
 , a) (by definition of f)

 =
)a,s(

)a,s(




 (by the definition of 1)

 =
)a),w,s(*(

)wa,s(*




 (since w = e).

Therefore equation (1) is true if k = 1 = 1(wa).

Step-(v): Suppose k > 1, and equation (1) is true for all strings wa

such that l(wa)  k. Now suppose wa is of length k + 1.

Centre for Distance Education 9.4 Acharya Nagarjuna University

Since k > 1, l(w) > 1 and so we can write w = w1a1 for some w1  * , a1  .

Now l(w) = l(w1 a1) = k.

By induction hypothesis, we have that

 1
* (f(s), w) = 1

* (f(s), w1a1) =
)a),w,s(*(

)aw,s(*

11

11




.

Now 1
* (f(s), wa) = 1 (1

* (f(s), w)), a)

 (by the definition of *)

 = 1 (1
* (f(s), w1a1) , a) (since w = w1a1)

 = 1 (
)a),w,s(*(

)aw,s(*

11

11




, a) (by induction hypothesis)

 =
)a),aw,s(*(

)a),aw,s(*(

11

11




 (by the definition of 1)

 =
)a),aw,s(*(

)aaw,s(*

11

11




 (by the definition of *)

 =
)a),w,s(*(

)wa,s(*




 (since w1a1 = w)

Hence the equation (1) is true for all sequences wa with wa  * and a  .

Step-(vi): Now f(s) (wa) =  (1
*
 (f(s), w), a) (by the definition s)

 =  (1 (1
*
 (f(s), w), a) [by the condition  ( (s, a) =  (s, a)]

 = (1
(f(s), wa)) (by the definition of )

 = (
)a),w,s(*(

)wa,s(*




) (by (1))

 =  (*
 (s, w), a) (by the definition )

 = s (wa).

Hence f(s) = s. The Proof is complete.

9.3. INPUT-OUTPUT HOMOMORPHISM (OR I/O-HOMOMORPHISM):

9.3.1. Definition: Let M = (ζ, ℐ, O, , ) and M1 = (ζ,1 , ℐ , O, 1, 1) be

i/o - machines. A function f : ζ  ζ1 is said to be an i/o-homomorphism if

f ( (s, a)) =  1 (f(s), a) and  (s, a) =  1 (f(s) , a).

If f is a bijection, then we say that f is an i/o-isomorphism.

Advanced Discrete Mathematics 9.5 Input/output (i/o)…

9.3.2. Result: Consider the machines M1 = (ζ1 , , O, 1, 1) and

M = (ζ , ℐ, O, , ) given in Theorem 9.2.6. Define g : ζ1 ζ by g(
z

s
) = s.

Show that g is a i/o-homomorphism.

Proof: To show this, we have to show that g( 1 (
z

s
, a)) =  (g(

z

s
), a) …. (i) and

 1 (
z

s
 , a) =  (g (

z

s
), a) ….. (ii).

Now we prove (i),

g( 1 (
z

s
 , a) = g(

)a,s(

)a,s(




) (by definition  1)

=  (s, a) (by the definition of g)

=  (g (
z

s
), a) (since g (

z

s
) = s)

To prove (ii),  1(
z

s
, a) =  (s , a) (by definition of  1)

 =  (g (
z

s
), a) (by the definition of g).

Hence g in an i/o- homomorphism.

9.3.3. Example: Consider the machines M1 = (ζ,1, ℐ, O, 1, 1), and

M = (ζ, ℐ, O, , ) given in the tables.

Machine M1

 1 1

STATES 0 1 0 1

a b a 1 0

b b a 1 1

c c b 1 1

Centre for Distance Education 9.6 Acharya Nagarjuna University

Machine M

  

STATES 0 1 0 1

0 2 1 1 0

1 3 0 1 0

2 2 1 1 1

3 2 0 1 1

4 4 2 1 1

If we define f : ζ  ζ1 as f(0) = f(1) = a, f(2) = f(3) = b, f(4) = c, then

 f is an i/o-homomorphism from M to M1

9.3.4. Theorem: Let M = (ζ , ℐ, O, , ) and M1 = (ζ1 , ℐ, O, 1 , 1) be

 i/o-machines and let f be an i/o-homomorphism from M to M1.

If s is a state of M, then  s =  f(s).

Proof: Now s(wa) =  (* (s, w), a) (by the definition of  s)

 =  1 (f (* (s, w)), a) (since f is an i/o- homomorphism)

 =  1 (1
* (f(s), w), a) (since f is a homomorphism)

 =  f(s) (wa) (by the definition of  s).

Hence  s =  f(s).

9.3.5. Definition: A partition  of ζ where M = (ζ , ℐ, O, , ) is an

i/o-machine congruence if it satisfies the following two conditions:

 (i) (P, a) is contained in some subset in  for each P  and a  ℐ, and (ii)

 (s, a) =  (t, a) for all a  ℐ and s, t  P.

9.3.6. Theorem: Let M = (ζ, ℐ, O, , ) be an i/o-machine and let  an

i/o-machine congruence. Then M = (, ℐ, O,  , ) is an i/o-machine and the

function f from ζ onto  given by f(s) = [s] is an i/o-homomorphim form M

onto M .

Advanced Discrete Mathematics 9.7 Input/output (i/o)…

 Proof: Since an i/o-machine congruence is also a state machine congruence, we have that

any i/o-machine M with an i/o-machine congruence  satisfies the hypothesis of the

Theorem 8.4.2.

By Theorem 8.4.2., f is a state homomorphism from M onto M = (, ℐ, ).

Define)a],s([ =  a,s . Now we show that  is well defined.

Suppose [s] = [t]

  t, s  P for some p  

   a,t =  a,s

 (by the definition of i/o-machine congruence)

    a,t =   a,s (by the definition of ).

Now we show that f is an i/o-homomorphism.

Since f is a state homomorphism, by Theorem 8.4.2., it remains to show that  a,s =

  a,sf .

Now  a,s =   a,s (by the definition of ).

 =   a,sf (by the definition of f).

Hence f is an i/o-homomorphism. The proof is complete.

9.3.7. If f is an i/o- homomorphism from M = (ζ , ℐ, O, , ) onto

M1 = (ζ1, ℐ, O, 1, 1), then there exists an i/o-machine congruence  of ζ such that

the mapping g([s]) = f (s) is an i/o-isomorphism from M onto M1.

Proof: Since f is an i/o- homomorphism, it is also a state homomorphism.

So by the Theorem 8.4.3., g is a state isomorphism from M onto M1.

It remains to show that   a,s =  1(g[s], a), where  is defined in Theorem 9.3.6. Now

 1(g[s], a) =  1 (f (s), a) (by the definition of g)

 =  (s, a) (since f is an i/o-homomorphism)

 =   a,s (by the definition of ).

Therefore   a,s =  1 (g[s], a).

Hence g is an i/o-homomorphism from M onto M1.

Centre for Distance Education 9.8 Acharya Nagarjuna University

9.3.8. Note: Let M = (ζ , ℐ, O, , ) be a machine. Define s ~ t  s = t.

This is an equivalence relation on ζ .

We write ζR = the set of all equivalence classes.

The states in any class have identical behavior. Now let R be  , and R be  . Now

ζ.R is an i/o-machine congruence .

The system MR = (ζR , ℐ, O, R , R) is an i/o-machine.

This MR is called the reduced machine of the given machine M.

Here R (P, a) =  (P, a) = [ (P, a)] which is defined in Note 8.4.1 and

R([s], a) =  ([s], a) =  (s, a) which is defined in Theorem 9.3.6.

If we define f : ζ  ζR by f(s) = [s] , then by the Theorem 9.3.6., f is an i/o-

homomorphism. This f is called the natural i/o- homomorphism.

9.3.9. Theorem: Let M = (ζ , ℐ, O, , ) be an i/o-machine and MR is its reduced

machine. If h is an i/o-homomorphism from M onto M1, then there exists an i/o-

homomorphism g from M1 onto MR such that f = g  h, where f is the natural i/o-

homomorphism form M onto MR.

Proof: Let M1 = (ζ1 , ℐ, O, 1, 1). We define g : R1  as follows:

Let s1  ζ1. Since h is onto, there exists s  ζ such that h(s) = s1.

Now we define g(s1) = g(h (s)) = [s].

Now we show that g is well defined. Let s1, t1  ζ1 such that s1 = t1.

Suppose s1 = h(s) and t1 = h(t). Now s1 = h(s) = h(t) = t1.

Since h is an i/o-homomorphism, by Theorem 10.2.7,  s =  f(s) and  t =  h(t) . Since

h(s) = h(t), we have  s =  f(s) =  h(t) =  t

  s ~ t  s, t  P for some P  ζR

  [s] = P = [t]

g

MR

f

M h
 M1

Advanced Discrete Mathematics 9.9 Input/output (i/o)…

  g(h(s)) = g(h(t))

  g(s1) = g(t1).

Now we show that f = g  h. By the definition of g, we have that

 g(h(s)) = [s] = f(s) (by the definition of natural homomorphism)

  g h = f.

Now we show that g is an i/o-homomorphism.

For this we have to show that g (1 (s1, a)) = R (g (s1), a)

and  1 (s1, a) =  R (g(s1) , a).

Since h is onto, there exists s  ζ such that h(s) = s1.

Now g (1 (s1, a)) = g(1 (h (s), a)

 = g(h ( (s, a))) (since h is an i/o-homomorphism)

 = [ (s, a)] (by the definition of g)

 =  ([s], a) (by the definition of )

 =  R ([s], a) (since  R = )

 =  R (g(h(s)), a) (by the definition of g)

 =  R (g(s1), a) (since h(s) = s1)

Now  1 (s1, a) =  1 (h(s) , a) (since h(s) = s1)

 =  (s, a) (since h is an i/o-homomorphism)

 =  ([s], a) (by the definition of )

 =  R ([s], a) (since  R = )

 =  R (g(h(s)), a) (by the definition of g)

 =  R (g(s1) , a) (since h(s) = s1)

Hence g is an i/o-homomorphism such that f = g h.

9.4 SUMMARY:

In the beginning of this lesson we explained the concept behavior of the machine with respect
to a starting state. We explained the state output machine, input-output homomorphism,
reduced machine. Few theorems on these concepts were included.

9.5 TECHNICAL TERMS:

1. Behavior

Behavior from ℐ to O, we mean a function  : ℐ* \ {e} O.

2. State output machine

Centre for Distance Education 9.10 Acharya Nagarjuna University

A State output machine is an i/o-machine M = (ζ, ℐ, O, , ) such that

(s, a) = ((s, a)) for a function  form ζ to O, it is denoted by

 M = (ζ, ℐ, O, , ).

3. i/o-homomorphism

M = (ζ, ℐ, O, , ) and M1 = (ζ,1 , ℐ , O, 1, 1) be i/o - machines. f : ζ  ζ1 is an i/o-

homomorphism if f ( (s, a)) =  1 (f(s), a) and  (s, a) =  1 (f(s) , a).

9.6 SELF ASSESSMENT QUESTIONS:

1. Define i/o homomorphism between two finite state machines.

2. Give an example of i/o homomorphism.

3. Define reduced machine.

9.7 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-203-
4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.
UTM Springer, 1998.

Prof. S. Srinadh

LESSON -10

REDUCED MACHINE AND ALGORITHM

OBJECTIVES:

 To calculate equivalence classes of states
 To understand the algorithm for a reduced machine
 To know the concept reduced machine

STRUCTURE:

10.1 Introduction
10.2 Distinguishable states
10.3 Algorithms for a reduced machine
10.4. Construction
10.5 Summary
10.6 Technical Terms
10.7 Self Assessment Questions
10.8 Suggested Readings

10.1 INTRODUCTION:

In this section we provide algorithm for reduced machine and provide some illustration.

10.2 DISTINGUISHABLE STATES:

10.2.1 Note: (i) States s and t of an i/o–machine are said to be distinguishable

 if s  t.

(ii) An input sequence w  ℐ* is said to distinguish the states s and t

 if s(w)  t(w).

10.2.2. Example: Consider the machine given by the table. Now we recollect the definition

of s.

 s(a) = (s, a) for all aℐ and s(wa) = (*(s, w), a).

States
 

0 1 0 1

0 2 1 1 0

1 3 0 1 0

2 2 1 1 1

Centre for Distance Education 10.2 Acharya Nagarjuna University

3 2 0 1 1

4 4 2 1 1

(i) Observe that 0(1) = (0, 1)

 = 0  1 = (2, 1) = 2(1).

Therefore 0, 2 are distinguishable.

The input “1” distinguishes the states “0” and “2”.

(ii) 2(a) = (2, a)

 = (4, a) = 4(a), for all a  ℐ.

(iii) 2(11) = (*(2, 1), 1)

 = ((2, 1), 1) = (1, 1) = 0,

4 (11) = (*(4, 1), 1)

 = ((4, 1), 1) = (2, 1) = 1.

Hence the input string “11” distinguishes the states 2 and 4.

10.2.3. Note: (i) Let k be a non-negative integer. Two states s and t said to be

 k-equivalent if s(w) = t(w) for all strings w of length k;

 (ii) k-equivalence is an equivalence relation;

(iii) s = t  s and t are k-equivalent for all k..

10.3 ALGORITHM TO FIND ΖR OF A GIVEN MACHINE:

10.3.1 Algorithm:

Step-(i): Determine 1-equivalent classes. (Here, s is 1-equivalent to t if

(s, a) = (t, a) for all a  ℐ).

Step-(ii): Set k = 1.

Step-(iii): Set k = (previous value of k) + 1.

Step-(iv): By using the (k - 1)–equivalence classes find k-equivalence classes.

 [How to find this ? Suppose k  2. Also suppose s is (k -1)–equivalent to t.

 If si = (s, ai), and ti = (t, ai) are (k-1)-equivalent for all ai  ℐ, then s and t are

k-equivalent. Otherwise s and t are not k-equivalent].

Advanced Discrete Mathematics 10.3 Reduced machine and Algorithm

Step-(v): If (k-1)-equivalent classes are not identical with k-equivalent classes, then go to

step-(iii).

Step-(vi): Write ζR : = the set of all k-equivalence classes.

Step-(vii): Stop.

Step-(viii): End.

10.3.2 Problem: Find ζR and hence the reduced machine MR for the machine given by

the table.

States  

0 1 0 1

s1 s2 s5 1 0

s2 s5 s5 1 1

s3 s1 s8 1 1

s4 s8 s2 1 0

s5 s6 s5 1 1

s6 s1 s5 1 1

s7 s2 s3 1 0

s8 s3 s5 1 1

Solution: The input 0 does not distinguish any two states.

The input “1” distinguishes the states s1, s4, s7 from s2, s3, s5, s6, s8.

Therefore 1-equivalnet classes are {s1, s4, s7} and {s2, s3, s5, s6, s8}.

Now we check whether s1 and s4 2-equivalent.

s2 = (s1, 0), s8 = (s4, 0) are 1-equivalent, and

s5 = (s1, 1), s2 = (s4, 1) are 1-equivalent

  s1 and s4 are 2-equivalent.

Similarly, s1, s7 are 2-equivalent. Hence {s1, s4, s7} is a 2-equivalence class.

Now we check whether s2 and s3 2-equivalent. s5 = (s2, 0), and s1 = (s3, 0) are not

1-equivalnet. Therefore s2 and s3 are not 2-equivalent.

Similarly, we observe that s2, s5 are 2-equivalent; s2, s8 are 2-equivalent; and s3, s6

are 2-equivalent.

Therefore, the 2-equivalent classes are {s1, s4, s7}, {s2, s5, s8}, {s3, s6}.

Centre for Distance Education 10.4 Acharya Nagarjuna University

In the same way, we find the 3-equivalent classes.

The 3-equivalent classes are {s1, s4}, {s7}, {s2}, {s5, s8}, {s3, s6}.

The 4-equivalent classes are s1}, {s2}, {s4}, {s5, s8}, {s7}, {s3, s6}.

The 5-equivalent classes are {s1}, {s2}, {s3, s6}, {s4}, {s5, s8}, {s7}.

Since the 4-equivalent classes are identical to the 5-equivlent classes, the process will

terminate here.

Therefore ζR = { {s1}, {s2}, {s3, s6}, {s4}, {s5, s8}, {s7}}.

Now the reduced machine MR = {ζR, ℐ, O, R, R) is given by

10.3.3. Problem: Minimize the number of states for the machine given by the following state

table.

 Solution: We know that 1-equivalence is defined as follows: s is 1-equivelnce to t if

(s, a) = (t, a) for all a  I = {0, 1}.

Now 1-equivalent classes for the given machine are

 {s0}, {s1}, {s2, s3, s5, s6}, {s4}.

Now we find the 2-equivalent classes.

Clearly {s0}, {s1}, {s4} are 2-equivalent class.

Now we check whether s2, s3 2-equivalent.

(s2, 0) = s2, (s3, 0) = s1, (s2, 1) = s2, (s3, 1) = s1, and s2, s1 are

States R =  R = 
0 1 0 1

{s1} {s2} {s5, s8} 1 0
{s2} {s5, s8} {s5, s8} 1 1

{s3, s6} {s1} {s5, s8} 1 1
{s4} {s5, s8} {s2} 1 0

{s5, s8} {s3, s6} {s5, s8} 1 1
{s7} {s2} {s3, s6} 1 0

States  
0 1 0 1

s0 s0 s2 0 0
s1 s2 s5 1 0
s2 s2 s2 1 1
s3 s1 s1 1 1
s4 s2 s3 0 1
s5 s4 s5 1 1
s6 s2 s6 1 1

Advanced Discrete Mathematics 10.5 Reduced machine and Algorithm

States  
0 1 0 1

{s0} {s0} {s2, s6} 0 0
{s1} {s2, s6} {s5} 1 0

{s2, s6} {s2, s6} {s2, s6} 1 1
{s3} {s1} {s1} 1 1
{s4} {s2, s6} {s3} 0 1
{s5} {s4} {s5} 1 1

not 1-equivalent.

Therefore s2, s3 are not 2-equivalent.

 Now we check whether s2, s5 2-equivalent.

 (s2, 0) = s2, (s5, 0) = s4, (s2, 1) = s2, (s5, 1) = s5, and s2, s4 are

not 1-equivalent.

Therefore s2, s5 are not 2-equivalent.

Next we verify whether s2, s6 2-equivalent.

(s2, 0) = s2, (s2, 1) = s2, (s6, 0) = s2, (s6, 1) = s6, and s2, s6 are 1-equivalent.

Therefore s2, s6 are 2-equivalent. Hence the 2-equivalent classes are

{s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.

Now we find the 3-equivalence classes.

We check whether s2, s6 3-equivalent.

(s2, 0) = s2, (s6, 0) = s2, (s2, 1) = s2, (s6, 1) = s6. Therefore s2, s6 are 3-equivalent.

Hence the 3-equivalent classes are {s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.

Observe that the 2-equivalent classes and 3-equivalent classes are identical.

The reduced machine is given in the table.

10.4. Construction

10.4.1. Note: To give an electronic construction of an i/o-machine, the state table must be

described in terms of Boolean functions. To do this

(i) Code the input and output alphabets in binary

(ii) Code the set of states in binary

(iii) Describe the output and next state functions as Boolean functions.

This procedure was illustrated in the following problem.

Centre for Distance Education 10.6 Acharya Nagarjuna University

Output z1 z2 State x1 x2

a 0 0 0 0 0

b 0 1 1 0 1

c 1 0 2 1 0

d 1 1 3 1 1

Table 1 Table 2

States  
0 1 0 1

0 1 2 c d
1 2 0 a b
2 2 3 a b
3 1 0 c d

States Input  
x1 x2 y 1

1x 1
2x z1 z2

0 0 0 0 1 1 0
0 0 1 1 0 1 1
0 1 0 1 0 0 0
0 1 1 0 0 0 1
1 0 0 1 0 0 0
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 1 0 0 1 1

Table III

10.4.2. Problem: Describe the given machine in terms of Boolean functions.

Solution: We solve this in three parts (i), (ii), and (iii).

(i) First we code the input and output alphabet:

For this example ℐ = {0, 1} and O = {a, b, c, d}.

The input alphabet is already in binary.

Since O contains four elements, we may use 00, 01, 10, 11.

So label a, b, c, d with 00, 01, 10, 11 respectively.

Call the two’s digit z1 and the units digit z2 . Observe table-I.

 (ii) Now we code the set of states. Here ζ = {0, 1, 2, 3}.

Label 0, 1, 2, 3 with 00, 01, 10, 11.

Call the two’s digit of this representation as x1 and units digit as x2.

Observe the table-II.

 (iii) Now we describe the output and next state functions as Boolean functions.

Suppose 1
1x represents the two’s digit and 1

2x represents the

Advanced Discrete Mathematics 10.7 Reduced machine and Algorithm

units digit of the next state.

The symbol y represents the input. Then we have table-III.

From the table, we can observe that 1
1x , 1

2x , z1 and z2 are functions of x1, x2 and y. Now it

is clear that

 1
1x = 1x 2x y 1x x2 y x1 2x y x1 2x y

 1
2x = 1x 2x y x1 2x yx1x2 y .

 z1 = 1x 2x y  1x 2x yx1x2 y x1x2y

 z2 = 1x 2x y 1x x2yx1 2x yx1x2y.

10.4.3. Note: Consider the Problem 10.4.2. A gating network can represent the functions

1
1x , 1

2x , z1 and z2 described. Now we draw the gating network.

(i) The functions z1 and z2 are available as out put from getting network.

(ii) Since the next state is a function of its previous state the functions 1
1x and 1

2x are

stored in a delay and are fed along with the input into the machine at the next time period.

10.4.4. Problem: Draw the getting network for the machine given in the Problem 10.4.2.

Solution: In the Problem 10.4.2., we obtained representation of 1
1x , 1

2x , z1 and z2 in terms

of x1, x2 and y.

The first input to the getting network is x1, x2, y.

The second input to the getting network is 1
1x , 1

2x , y.

(Here 1
1x , 1

2x are first outputs).

The outputs 1
1x , 1

2x are stored in a delay and fed into the machine as input for the next

period.

The outline of the getting network is given below.

We call this getting network as ‘realization’ of the given machine.

Gating network with input x1, x2
and y; and output 1

1x , 1
2x , z1, z2.

x1

x2

y

z1

z2

1
2x

1
1x

1
1x

1
2x

DELAY

DELAY

x1

x2

Centre for Distance Education 10.8 Acharya Nagarjuna University

10.4.5. Note: In the above 10.4.4., we obtained a realization for the given machine. If one

wants to find the further simplified electronic getting network (that is, a more simplified

realization), first we have to use Quine–Mc Cluskey minimization procedure for the

functions 1
1x , 1

2x , z1 and z2 and then we have to draw the realization.

10.5 SUMMARY:

In this lesson, we have learned to find the equivalence classes of the set of all states and
hence provided an algorithm to find its reduced machine. Also some problems related to the
reduced machine were presented.

10.6 TECHNICAL TERMS:

Distinguishable states
States s and t of an i/o–machine are said to be distinguishable if s  t.

k-equivalent states
Two states s and t said to be k-equivalent if s(w) = t(w) for all strings w of
length k;

Algorithms for set of States of the reduced machine
(Algorithm 10.3.1.)

10.7 SELF ASSESSMENT QUESTIONS:

1. Minimize the number of states for the machine given by the following state table.

Ans: We know that 1-equivalence is defined as follows:

s is 1-equivelnce to t if (s, a) = (t, a) for all a  ℐ = {0, 1}.

Step 1: Now 1-equivalent classes for the given machine are

 {s0}, {s1}, {s2, s3, s5, s6}, {s4}.

Step 2: Now we find the 2-equivalent classes.

Clearly {s0}, {s1}, {s4} are 2-equivalent class.

Now we check whether s2, s3 2-equivalent.

(s2, 0) = s2, (s3, 0) = s1, (s2, 1) = s2, (s3, 1) = s1, and

States  
0 1 0 1

s0 s0 s2 0 0
s1 s2 s5 1 0
s2 s2 s2 1 1
s3 s1 s1 1 1
s4 s2 s3 0 1
s5 s4 s5 1 1
s6 s2 s6 1 1

Advanced Discrete Mathematics 10.9 Reduced machine and Algorithm

States  
0 1 0 1

{s0} {s0} {s2, s6} 0 0
{s1} {s2, s6} {s5} 1 0

{s2, s6} {s2, s6} {s2, s6} 1 1
{s3} {s1} {s1} 1 1
{s4} {s2, s6} {s3} 0 1
{s5} {s4} {s5} 1 1

s2, s1 are not 1-equivalent.

Therefore s2, s3 are not 2-equivalent.

Now we check whether s2, s5 2-equivalent.

(s2, 0) = s2, (s5, 0) = s4, (s2, 1) = s2, (s5, 1) = s5, and

 s2, s4 are not 1-equivalent.

Therefore s2, s5 are not 2-equivalent.

Next we verify whether s2, s6 2-equivalent.

(s2, 0) = s2, (s2, 1) = s2, (s6, 0) = s2, (s6, 1) = s6, and s2, s6 are 1-equivalent.

Therefore s2, s6 are 2-equivalent.

Hence the 2-equivalent classes are {s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.

Step 3: Now we find the 3-equivalence classes.

We check whether s2, s6 3-equivalent.

(s2, 0) = s2, (s6, 0) = s2, (s2, 1) = s2, (s6, 1) = s6.

Therefore s2, s6 are 3-equivalent.

Hence the 3-equivalent classes are {s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.

Observe that the 2-equivalent classes and 3-equivalent classes are identical.

The reduced machine is given in the table.

10.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-203-
4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.
UTM Springer, 1998.

Prof. Dr Kuncham Syam Prasad .

LESSON -11

SOME PROPERTIES OF LATTICES

OBJECTIVES:

 To know the system Lattice.
 To understand the concepts Algebraic Lattice, Ordered Lattice.
 To identify different types of relations.
 To Learn to draw the diagrams related to lattices.
 To have proper understanding of different properties.
 To develop skills in solving the problems.

STRUCTURE:

11.1 Introduction
11.2 Partial Order relations, PO sets, Hasse Diagrams.
11.3. Lattices
11.4. Some more concepts in Lattice theory.
11.5 Summary
11.6 Technical Terms
11.7 Self Assessment Questions
11.8 Suggested Readings

11.1. Introduction
The present day concept of lattice was first considered by E. Schroder about the year 1890.
At the same time, R. Dedekind developed a similar concept in his work on groups and
ideals. Dedekind defined modular and distributive lattices, which are different types of
lattices. The lattice theory developed rapidly around 1930, when G. Birkhoff started his
contribution to the lattice theory.

11.2. Partial Order relations, PO sets, Hasse Diagrams.

The concept ‘relation’ plays an important role in algebraic structures. Different types of
relations which play a vital role are: equivalence relations, functions, totally ordered
relations, partially order relations, etc.

11.2.1. Definitions: Let A and B be sets.

 (i). A relation R from A to B is a subset of A  B, the Cartesian product of A
and B.

 (ii). Relations from A to A are called relations on A.

 (iii). If (a, b)  R, we write aRb and say that “a is in relation R to b”.

 (iv) If we consider a set A together with a relation R, then we write (A, R).

Centre for Distance Education 11.2 Acharya Nagarjuna University

 11.2.2. Definitions: Let R be a relation on a set A. Then

 (i). R is said to be a reflexive relation if
 aRa for all a  A.

 (ii) R is said to be a symmetric relation if
 aRb  bRa for all a, b  A.

 (iii) R is said to be an antisymmetric relation if
 aRb and bRa  a = b for all a, b  A.

 (iv) R is said to be a transitive relation if
 aRb and bRc  aRc for all a, b, c  A.

 (v) A relation R is said to be an equivalence relation on A if it is reflexive,
symmetric, and transitive.

In this case, for any a  A, we write [a] : = {b  A / aRb} and this set is called the
equivalence class of a.

 (vi). A reflexive, antisymmetric, and transitive relation R on a set A is called a partial
order relation. In this case, (A, R) is called a partially ordered set (or POset, in short).

 11.2.3. Note: (i) In case of partially ordered relation, we may write  or  or 
instead of R.

 (ii) Now let us write  instead of R.

 (iii) Partially ordered finite sets (A, ) can be graphically represented by Hasse diagrams.

Here the elements of A are represented as points on a plane.

If b  a and b  a, then we write b < a.

If b < a and there is no c in A such that b < c < a, then we say that a covers b.

If a covers b, then we mark a point representing

a above the point for b, and connect the points of a and b by a line segment.

11.2.4. Examples: (i) The fact a covers b is illustrated in the following Figures: Fig-1
and Fig-2.

 (ii) Now consider the Fig - 2.
In this, we can observe the following facts:
D covers E; B covers C; F covers C; A covers F. Also note that B joined to
E by a sequence of line segments all going downwards.
So we have B  E.

 Advanced Discrete Mathematics 11.3 Some Properties of Lattices

 Fig - 1 Fig - 2

 11.2.5. Examples: (i) The Hasse diagram of the POset

 (P({1, 2, 3}), ) is shown in Figure-3, where P(S) denotes the power set of S (that is,
the set of all subsets of S).

 (ii) The Hasse diagram of ({1, 2, 3, 4, 5}, ), where  means usual “less than or equal
to” is shown in figure - 4.

 (iii) Write A = {a, b, c, d}, and

R = {(a,a), (b,b), (c,c), (d,d), (b,a), (c,a), (d,a), (d,c)}.



{1, 2, 3}

{2, 3} {1, 2} {1, 3}

{1}
{2} {3}

1

2

3

4

5

Figure 3 Figure 4

d

a

b
c

Figure 5

a

b

a covers b

A

B F

C

D

E

Centre for Distance Education 11.4 Acharya Nagarjuna University

Now it is easy to verify that R is a partial order on the set A. In this example we take aRb

as a  b.

The diagram for this POset is given in figure - 5.

 11.2.6. Definition: A partial order relation  on A is said to be a linear order if for

each a, b  A either a  b or b  a holds.

In this case, (A, ) is called a linearly ordered set or a chain or a totally ordered set.

11.2.7. Examples: (i) The partially ordered set
 ({1, 2, 3, 4, 5}, ) is a chain.

 (ii) The partially ordered set (P({1, 2, 3}), ) is not a chain.

11.2.8. Definitions: (i). Let R be a relation from A to B.

Then we define a relation R-1 from B to A by

 (a, b)  R-1  (b, a)  R.

This relation R-1 is called the inverse relation (or transpose relation) of R.

In other words, if (A, ) is a partially ordered set, then (A, ) is also a partially ordered set,

and  is the inverse relation to ..

(ii) Let (A, ) be a POset, and B  A. We say that an element a in A is said to be a

greatest element if all other elements are smaller than a (that is, x  a for all x  A).

(iii) An element b in A is said to be a smallest element of A if b  x for all x 

A.

(iv) An element c in A is said to be a maximal element of A if “no element is bigger

than c ” (that is, c  x  c = x for all x  A).

(v) An element d  A is said to be a minimal element of A

if x  d  x = d for all x  A.

(vi) a  A is called an upper bound of B if b  a for all b  B.

(vii) a  A is called a lower bound of B if a  b for all b  B

(viii) The greatest amongst the lower bounds of B, whenever it exists, is called the infimum
of B, and is denoted by inf B.

(ix) The least upper bound of B, whenever it exists, is called the supremum of B, and is

denoted by sup B.

(x). We write inf (a1, …, an) and sup (a1, …, an) instead of inf {a1, …, an} and

sup {a1, …, an}, respectively.

 Advanced Discrete Mathematics 11.5 Some Properties of Lattices

11.2.9. Note: Let (A, ) be a PO set. Then we have the following:

 (i) A has at most one greatest and one smallest element.

 (ii) There may be none, one, or several maximal (or minimal) elements in a POset.

 (iii) Every greatest element is maximal.

 (iv) Every smallest element is minimal.

11.2.10. Examples: Consider the POset (A, ) = (ℝ, ) where ℝ is the set of real
numbers and "  " is the usual order on the set of all real numbers.

(i) Write B = the interval [0, 3). Then it is clear that inf B = 0 and sup B = 3.

(ii) Write C = the interval (0, 3]. Then it is clear that inf C = 0 and sup C = 3.

(iii) From (i) and (ii), we can understand that in general, the infimum (or supremum) of a set
X may or may not be in the set X.

(iv) Consider D = ℕ, the set of natural numbers.
It is clear that inf D = 1, but sup D does not exist.

11.2.11. Zorn’s lemma: If (A, ) is a poset such that every chain of elements in A has an
upper bound in A, then A has at least one maximal element.

11.3. LATTICES:

11.3.1. Definition: (i). A poset (L, ) is said to be a lattice (or lattice ordered set) if
supremum of x and y; and infimum of x and y exist for every pair x, y  L.

11.3.2. Note: (i) Every chain (A, ) is a lattice ordered set [If a, b are in A, then since A is

a chain, we have that a  b or b  a. If a  b then b is the sup of a, b; and a is the inf. of a,b.

If b  a then a is the sup of a, b; and b is the inf. of a,b. Hence, (A, ) is a lattice ordered

set].

(ii). Let (L, ) be a lattice ordered set; and

x, y  L. Then we have the following:

 x  y  sup (x, y) = y  inf (x, y) = x.

11.3.3. Definition: An (algebraic) lattice (L, , ) is a set L with two binary
operations  (called as meet or intersection or product) and  (called as join or union or
sum) which satisfy the following laws (for all x, y, z  L):

(L1) Commutative laws:
x  y = y  x, and x  y = y  x.

Centre for Distance Education 11.6 Acharya Nagarjuna University

(L2) Associative laws:
x  (y  z) = (x  y)  z, and x  (y  z) = (x  y)  z.

(L3) Absorption Laws:
 x  (x  y) = x; and x  (x  y) = x.

11.3.4. Note: Let (L, , ) be an algebraic lattice and x  L.

(i) x  x = x  (x  (x  x)) (by absorption law)

 = x  (x  (y)), where y = x  x

 = x (by absorption law).

(ii) x  x = x  (x  (x  x)) (by absorption law)

 = x  (x  (y)) where y = x  x

 = x (by absorption law)

(iii) From (i) and (ii), we got the following axioms:

 (L4) Idempotent laws:

 x  x = x, and x  x = x.

(iv). Sometimes we read x  y and x  y as “x vee y” and “x wedge y”.

11.3.5. Remark: Suppose (L, ) be an algebraic lattice. Now we verify that

x  y = y  x  y = x for any x, y  L.

 (i) Suppose x  y = y. Then

x  y = x  (x  y) (by the supposition)

 = x (by obsorbtion law)

 (ii) Suppose x  y = x. Then

 x  y = (x  y)  y (by supposition)

 = y  (y  x) (by commutative law)

 = y (by obsorption law).

 (iii) By (i) and (ii), we have that x  y = y  x  y = x.

1.3.6. Theorem: (i) Let (L, ) be a lattice ordered set. If we define

x  y : = inf (x, y), and x  y : = sup (x, y)

Then (L, , ) is an algebraic lattice.

 Advanced Discrete Mathematics 11.7 Some Properties of Lattices

(ii) Let (L, , ) be an algebraic lattice. If we define x  y  x  y = x,

then (L, ) is a lattice ordered set.

 Proof: Part-(i): Let (L, ) be a lattice ordered set and x, y, z  L.

Now we verify the axioms in (L1). (Commutative laws):

 x  y = inf (x, y) = inf (y, x) = y  x,

 x  y = sup (x, y) = sup (y, x) = y  x.

Now we verify the axioms in (L2). (Associative laws):

 x  (y  z) = x  inf (y, z)

 = inf (x, inf (y, z)) = inf (x, y, z)

 = inf (inf(x, y), z) = inf (x, y)  z

 = (x  y)  z.

Similarly, we have that

 x  (y  z) = (x  y)  z

Now we verify the axioms in (L3). (Absorption laws):

 x  (x  y) = x  sup (x, y)

 = inf (x, sup (x, y)) = x

 x  (x  y) = x  inf (x, y)

 = sup (x, inf (x, y)) = x.

Part-(ii): Let (L, , ) be an algebraic lattice. Let x, y, z  L.

Step-(i): In this step we prove that (L, ) is a partially ordered set.
By idempotent laws, we have that

x  x = x and x  x = x and so x  x.

This shows that  is reflexive.

Now we verify the antisymmetric property.

For this, suppose x  y and y  x.

  x  y = x and y  x = y

  x = x  y = y  x (by commutative law)

 = y

  x = y.

This shows that  is antisymmetric.

Now we verify the transitive property.

Centre for Distance Education 11.8 Acharya Nagarjuna University

For this, suppose x  y and y  z.

  x  y = x and y  z = y

  x = x  y = x  (y  z)

 = (x  y)  z (by associative law)

 = x  z.

  x = x  z.  x  z .

This shows that  is transitive.

So we can conclude that (L, ) is a poset.

Step-(ii): In this step we prove that sup (x, y) = x  y.

By Remark 11.3.5., we have that

x  y  x  y = y  x  y = x …. (i).

Let x, y  L. Then x  (x  y) = x  x  x  y.

Similarly y  x  y. Therefore x  y is an upper bound for {x, y}.

Suppose z  L be an upper bound for {x, y}. Then x  z and y  z.

By (i), we get that x  z = z and y  z = z.

Now (x  y)  z = x  (y  z) (by associative law)

 = x  z (by (i))

 = z .

  x  y  z.

This shows that x  y is the least upper bound for x and y, and

 hence sup (x, y) = x  y.

Step-(iii): In this step, we prove that inf (x, y) = x  y.

Now x  (x  y) = x  x  y  x .

Similarly y  (x  y) = y  (y  x) (by commutative law)

 = y (by absorption law).

  x  y  y.

This shows that x  y is a lower bound for {x, y}.

Suppose z  L be a lower bound for {x, y}.

Then z  x and z  y.

By (i), we get that x  z = z and y  z = z.

Now (x  y)  z = x  (y  z) (by associative law)

 Advanced Discrete Mathematics 11.9 Some Properties of Lattices

 = x  z = z .

  z  x  y .

This shows that x  y is the greatest lower bound for x and y, and

hence inf (x, y) = x  y.

Step-(iv): From the above steps (i) to (iii), we conclude that (L, ) is a lattice ordered set.

11.3.7. Remark: (i) From the Theorem 11.3.6., it is clear that there exists a one-to-one
relationship between lattice ordered sets and algebraic lattices. In other words, the concepts
"lattice ordered set" and "algebraic lattice" are equivalent. So we can use the term lattice for
both concepts: lattice ordered sets and algebraic lattices.

 (ii) We write |L| to denote the number of elements of L.

 (iii) If N is a subset of a POset, then VxN x and xN x denote the supremum and

infimum of N, respectively, whenever they exist.

We also say that the supremum of N is the join of all elements of N and the infimum is
the meet of all elements of N.

11.4. SOME MORE CONCEPTS IN LATTICE THEORY:

11.4.1. Duality Principal (or Principle of Duality):
Any “formula” involving the binary operations  and  which is valid in any lattice
(L, , ) remains valid if we replace  by , and  by  everywhere in the formula.
This process of replacing is called dualyzing.

11.4.2. Definitions: If a lattice L contains a smallest (greatest, respectively) element with
respect to , then this uniquely determined element is called the zero element (unit element,
respectively). The zero element is denoted by 0, and the unit element is denoted by 1. The
elements 0 and 1 are called universal bounds. If the elements 0 and 1 exist, then we say
that the lattice L is a bounded lattice.

11.4.3. Note: If a lattice L is bounded (by 0 and 1), then every x in L satisfies 0 

x  1, 0  x = 0, 0  x = x, 1  x = x, and 1  x = 1.

11.4.4. Problem: Suppose that L is a lattice. Show that

 (i) If x1, x2, …xn  L, then x1 x2… xn  L.

Also x1 x2… xn  L.

 (ii) If L is a finite lattice, then L is bounded.

 Solution: (i) Let x1, x2, …xn  L.

We prove that x1 x2… xn  L, by using the mathematical induction.

Centre for Distance Education 11.10 Acharya Nagarjuna University

If n = 2, then since L is a lattice, we get that x1 x2  L.

Now assume the induction hypothesis that

x1, x2, …xn-1  L  x1 x2… xn-1  L.

Suppose that x1, x2, …xn  L

  x1 x2… xn-1  L and xn  L (by induction hypothesis)

  x1 x2… xn-1 xn  L (by the definition of lattice).

By mathematical induction, we conclude that

 x1 x2… xn  L for any integer n and x1, x2, …xn  L.

In a similar way, we can prove that x1 x2… xn  L.

 (ii). Suppose that L is a finite lattice with m elements.

Then we can take L = { x1, x2, …xm}.

By (i), x1 x2… xm , x1 x2… xm  L.

It is clear that x1 x2… xm  xi for 1  i  m and

xi  x1 x2… xm for 1  i  m.

Therefore x1 x2… xm is an upper bound for L and x1 x2… xm is a lower

bound for L. Therefore L is a bounded lattice.

11.4.5. Lemma: In every lattice L the operations  and  are isotone (that is, y 

z  x  y  x  z, and x  y  x  z).

 Proof: Suppose that y  z.

Part-(i): We know that y  z  y  z = y.

So we have that

x  y = (x  x)  (y  z) (by idempotent law)

 = (x  y)  (x  z) (by associative and commutative laws)

  x  y  x  z.

Part-(ii): We know that y  z  y  z = z.

Now (x  y)  (x  z) = (x  x)  (y  z) (by associative and commutative laws)

 = x  (y  z) (by idempotent law)

 = x  z.

This shows that x  y  x  z. The proof is complete.

11.4.6. Theorem: Let L be a lattice, and x, y, z  L.
Then L satisfy the following distributive inequalities:

 Advanced Discrete Mathematics 11.11 Some Properties of Lattices

(i) x  (y  z)  (x  y)  (x  z)

(ii) x  (y  z)  (x  y)  (x  z)

 Proof: Part-(i): We know that x  y  x, and x  y  y  y  z.

So x y is a lower bound for x and y  z  x  y  x  (y  z) … (iii)

Now x  z  x and x  z  z  y  z

  x  z is a lower bound for x and y  z  x  z  x  (y  z) … (iv)

From (iii) and (iv), we have that x  (y  z) is an upper bound for x  y and x  z.

  (x  y)  (x  z)  x  (y  z).

The proof is complete for (i).

Part-(ii): We know that x  x  y and x  x  z

  x is a lower bound for x  y and x  z  x  (x  y)  (x  z) … (v)

we know that y  z  y  x  y and y  z  y  x  z

  y  z is a lower bound for x  y and x  z

  y  z  (x  y)  (x  z) … (vi)

From (v) and (vi), we have that (x  y)  (x  z) is an upper bound for x and y  z.

  x  (y  z)  (x  y)  (x  z).

The proof is complete.

11.4.7. Definition: A subset S of a lattice L is called a sublattice of L if S is a lattice

with respect to the restriction of  and  from L to S.

It is clear that a subset S of L is a sublattice of the lattice L  S is “closed” with

respect to  and  (that is, s1, s2  S  s1  s2  S and s1  s2  S).

11.4.8. Definition: For two elements x, y in a lattice L (with x  y), we define the

interval as follows: [x, y] : = {a  L / x  a  y}.

Note that this interval is a sublattice of L.

11.5 SUMMARY:

Several properties of lattices were presented. The definitions of some important concepts
related to Lattice theory namely Partial order relation, partial ordered set, Ordered lattice set,
algebraic lattice, sublattice, universal bounds were included. Some Lemmas, and theorems
were also proved. It is proved that every ordered lattice may be turned into algebraic lattice,
and vice-versa. Some examples were presented to understand the concepts in a better way by
the reader.

Centre for Distance Education 11.12 Acharya Nagarjuna University

11.6 TECHNICAL TERMS:

1. Partial order relation.
A reflexive, antisymmetric, and transitive relation R on a set A is called a partial order
relation.

2. Partially ordered set (or POset, in short).
 (A, R) is called a partially ordered set (or POset) if R is a partial order relation on A.

3. Hasse Diagram
(Refer Note 11.2.3., and Example 11.2.5)

4. Zorn’s lemma.
If (A, ) is a poset such that every chain of elements in A has an upper bound in A,
then A has at least one maximal element.

5. Lattice (or Lattice ordered set)
A poset (L, ) is said to be a lattice (or lattice ordered set) if supremum of x and y; and

infimum of x and y exist for every pair x, y  L.

6. Duality Principal (or Principle of Duality):
Any “formula” involving the binary operations  and  which is valid in any lattice
(L, , ) remains valid if we replace  by , and  by  everywhere in the formula.
This process of replacing is called dualyzing.

7. Sublattice
A subset S of a lattice L is called a sublattice of L if S is a lattice with respect to the
restriction of  and  from L to S.

11.7 SELF ASSESSMENT QUESTIONS:

1. Define partial ordered set, and give an example.

2. What do you mean by Hasse Diagram, and give an example.

3. What do you mean by a chain. Show that every chain is a lattice.

4. Prove that every ordered lattice set can be turned in to an algebraic lattice.

5. Prove that every algebraic lattice can be turned in to an ordered lattice set.

6. Determine all the partial orders and their Hasse diagrams on the set L = {a, b}. Which
of them are chains ?

[Ans: The possible partial orders on L = {a, b} are

 Fig-1 Fig-2 Fig - 3

 The POsets in Fig -1 and fig-2 are chains.

a

b

b

a

 a b

 Advanced Discrete Mathematics 11.13 Some Properties of Lattices

c

a

b a

b

c b

c

a

Fig -7 Fig -8 Fig -9

c

a

b

c

b

a

Fig -10 Fig -11

The POset in fig - 3 is not a chian (because a ≰ b and b ≰ a).]

7. Determine all the partial orders and their Hasse diagrams on the set L = {a, b, c}.
Which of them are chains?

[Ans: The required partial orders are given below.

Among all these partial orders, the partial orders given in Figures 1 to 6 are chains.]

11.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Kuncham Syam Prasad

a

b

c

a

c

b

b

c

a

b

a

c

c

b

a

c

a

b

Fig -6 Fig -1 Fig -2 Fig -3 Fig -4 Fig -5

a

b
b

c

Fig -12

a

c
b

b

Fig -13

b

c
b

a

Fig -14

b

a
b

c

Fig -15

 a b c

Fig -16

LESSON -12

SOME EXAMPLES OF LATTICES, AND
HOMOMORPHISMS

 OBJECTIVE:

 To know different examples of Lattices.
 To understand the concept: product of lattices.
 To Learn to draw the diagrams of lattices.
 To have proper understanding of different types of homomorphisms.

STRUCTURE

12.1 Introduction
12.2 Some Examples of Lattices
12.3. Homomorphisms
12.4 Summary
12.5 Technical Terms
12.6 Self Assessment Questions
12.7 Suggested Readings

12.1. INTRODUCTION

In the previous lesson, we came to know the fundamental definitions of lattices, and also
some important theorems. In this Lesson, we present several important examples for better
understanding of the concepts. Later different types of homomorphisms were explained.

12.2. SOME EXAMPLES OF LATTICES:

In this section, we include some important examples of lattices.

12.2.1. Examples: (i). Consider ℕ = the set of all natural numbers.

Define a  b  a divides b, for all a, b  ℕ. Then (ℕ, ) is a POset.

For any x, y  ℕ, we write x y = gcd {x, y} and x y = lcm {x, y}.

Then (ℕ, ) is a lattice. Here 1 is the zero element.

The greatest element does not exist.

(ii). Let A be a set. Consider ℘(A) = the power set of A, the set of all subsets of A.

(℘(A), ) is a POset (where  is the set inclusion).

For any X, Y  ℘(A), we write X Y = X Y and X  Y = X Y.

Then (℘(A), ) is a lattice.

Centre for Distance Education 12.2 Acharya Nagarjuna University

In this lattice,  is the smallest element and A is the greatest element.

(iii) Let V be a vector space. Write S(V) = the set of all subspaces of V.

(S(V), ) is a POset where  is the set inclusion.

For U, W  S(V), we write U  W = U W and U  W = U + W.

Then (S(V), ) is a lattice.

In this lattice, the subspace (0) is the smallest element and V is the greatest element.

12.2.2. Definition: Let {Li / i  I} be a collection of lattices with 0 and 1.

Write A = 
Ii

iL , the Cartesian product of sets. Let {ai}, {bi}  A.

Define {ai}  {bi}  ai  bi for all i  I.

With this definition, (A, ) is a POset.

Define {ai}  {bi} = {ci} and {ai} {bi} = {di} where

 ci = ai bi and di = ai  bi for all i  I.

Then (A, ) is a lattice.

Consider the elements {xi} where xi = 0 in Li for all i and {yi} where yi = 1 in

Li for all i.

Then {xi} is the smallest element in A, and {yi} is the greatest element in A.

Here we may write {xi} as (0, 0, …0, …) and {yi} as (1, 1, … 1, …).

Hence (A, ) is a lattice with 0 and 1. This lattice is called as product lattice.

 12.2.3. Examples: Now we provide the Hasse diagrams of all the lattices with n elements

where 1  n  6.

The symbol n
iV denotes the ith lattice with n elements.

a

V1
3

1

0 0

1

V1
1

1

0

V1
2

b

0

a

1

Lattice V1
4

1

0
V2

4

a

b

Advanced Discrete Mathematics 12.3 Some Examples of Lattices…

1

a b

Lattice V1
5

c

0

c

1

a b

Lattice V2
5

0

1

a b

Lattice V3
5

0

c

1

c

a

b

0

Lattice V4
5

1

a

c

b

0

V5
5

1

a

c

b

0

V1
6

d

a

0

Lattice V2
6

c

d

b

1

Centre for Distance Education 12.4 Acharya Nagarjuna University

b

0

d

1

c

a

Lattice V5
6

c

a

0

d

1

b

Lattice V6
6

1

0

d c

a b

Lattice V7
6

1

a b
d

c

0

Lattice V8
6

a

c

1

d

b

0

Lattice V9
6

a

0

1

d

b c

Lattice V10
6

Advanced Discrete Mathematics 12.5 Some Examples of Lattices…

12.2.4. Examples: (i). In the following tables, we provide the operation tables for the lattice

V4
5. This table, provides the information regarding x  y and x  y for all x and y

of the lattice.

a

0

1

d

b

Lattice V11
6

c a

0

1

d

b c

Lattice V12
6

d

0

a b

c

1

Lattice V13
6

0

a b
d

c

1

Lattice V14
6

Lattice V15
6 a b c d

1

0

Centre for Distance Education 12.6 Acharya Nagarjuna University

1cba0

cc0a0

b0b00

aa0a0

00000

1cba0

1

c

b

a

0



11111

1c1cc

11b1b

1c1aa

1cba0

1cba0

1

c

b

a

0



 The tables given in above are called as operation tables.

 (ii). Let V be a vector space.

Write S(V) = the set of all subspaces of V.

L(V) = ℘(V) = the set of all subsets of V.

Now (S(V), ) and (L(V), ) are two lattices where  is the set inclusion. (Refer

Example 12.2.1 (ii) and (iii)).

 (iii). S(V)  L(V) and (S(V), ) is a subPOset of (L(V), ).

(iv). Suppose V is a vector space over the field ℝ of real numbers with basis {v1, v2,

v3}. Write Vi = ℝvi for 1  i  3.

Then each Vi is a subspace of V.

Now in S(V), we have that V1  V2 = V1 + V2.

In L(V), we have that V1  V2 = V1 V2.

It is clear that v1 + v2  V1 + V2 and v1 + v2  V1  V2.

Hence V1  V2 = sup {V1 , V2} = V1 + V2 in the lattice S(V), is not same as

 V1  V2 = sup {V1 , V2} = V1 V2 in the lattice L(V).

This shows that S(V) cannot be a sublattice of L(V).

 (v). Every singleton subset of a lattice L is a sublattice of L.

12.3. HOMOMORPHISMS:

12.3.1. Definitions: Let L and M be lattices. A mapping f : L  M is called a

 (i) join-homomorphism if f(x  y) = f(x)  f(y);

 (ii) meet-homomorphism if f(x  y) = f(x)  f(y);

 (iii) order-homomorphism if x  y  f(x)  f(y) hold for all x, y  L.

Advanced Discrete Mathematics 12.7 Some Examples of Lattices…

 (iv) The function f is said to be a homomorphism (or lattice homomorhism) if it is both a
join-homomorphism and a meet-homomorphism.

 (v) Injective, surjective, or bijective (lattice) homomorphisms are called (lattice)
monomorphisms, epimorphisms, or isomorphisms, respectively.

 (vi) If f is a homomorhisms from L to M, then f(L) is called as the homomorphic
image of L.

 (vii) If there is an isomorphism from L to M, then we say that L and M are
isomorphic, and we denote this fact by the symbol ' L  M '.

 12.3.2. Note: (i) The homomorphic image f (L) is a sublattice of M where f : L
 M is a lattice homomorphism.

[Verification: Let f : L  M be a lattice homomorphism. Let x1, y1  f (L)  there

exists x, y  L such that f(x) = x1 and f (y) = y1.

Since L is a lattice, x  y and x  y exists.

Now x1  y1 = f (x)  f (y) = f (x  y)  f (L).

Also x1  y1 = f (x)  f (y) = f (x  y)  f (L).

Now we have that x1  y1, x1  y1  f (L).

Hence f (L) is a lattice and so it is a sublattice of M].

 (ii) Every join (or meet)-homomorphism is an order-homomorphism.

[Verification: Part-(i): Let x  y

  x  y = y  f (x  y) = f (y)

  f (x)  f (y) = f (y) [if f is a join-homomorphism]

  f (x)  f (y)

Now we proved that if f is a join-homomorphism, then f is an order homomorphism.

Part-(ii): Let x  y

  x = x  y  f (x) = f (x  y)

  f (x) = f (x) f (y) (if f is a meet-homomorphism)

  f (x)  f (y).

Now we proved that if f is a meet-homomorphism, then f is an order omomorphism.]

 (iii) Every order-homomorphism need not be a join (or meet)-homomorphism. [Please refer
the mapping h defined in the Example 12.3.4. This h is an order homomorphism, but not
either meet homomorphism or join homomorphism].

Centre for Distance Education 12.8 Acharya Nagarjuna University

(iv) The relationship between different types of homomorphisms is presented in a
diagramatic form.

 12.3.3. Example: Consider the lattices represented by the following diagrams.

These lattices are isomorphic under the isomorphism given by
 0 ↦ r, a ↦ s, b ↦ t, 1 ↦ u.

The map 0 ↦ r, a ↦ t, b ↦ s, l ↦u is another isomorphism.

 12.3.4. Example: Consider the lattices L1, L2 and L3 given here. Define the functions f,
g and h as follows:

f : L1 ↦ L2 by f(01) = f(a1) = f(b1) = 02 , f(11) = 12;

g : L1 ↦ L2 by g(01) = 02, g(11) = g(a1) = g(b1) = 12;

h : L1 ↦ L3 by h(01) = 03, h(a1) = a3, h(b1) = b3, h(11) = 13.

isomorphism

monomorphism epimorphism

homomorphism

Join-homomorphism Meet-homomorphism

Order-homomorphism

r

 s t

u

0

a b

1

Advanced Discrete Mathematics 12.9 Some Examples of Lattices…

(i) These three mappings are order-homomorphisms.

(ii) Here f is a meet-homomorphism (since f(a1  b1) = f(01) = 02 = f(a1)  f(b1)).

However, f is not a homomorphism (since f(a1  b1) = f(11) = 12 and f(a1)  f(b1) = 02).

So f is a meet-homomorphism but not a join-homomorphism.

 (iii) We can observe that g is a join-homomorphism, but not a meet-homomorphism.

(iv) We can observe that h is neither a meet-homomorphism nor a join-homorphism.

(Since h(a1  b1) = h(01) = 03 and h(a1)  h(b1) = a3  b3 = a3.

Also h(a1  b1) = h(11) = 03 and h(a1)  h(b1) = a3  b3 = b3).

12.3.5. Definition: Let L and M be two lattices. The set of ordered pairs

{(x, y) / x  L, y  M} (that is, the direct product of L and M (in symbols, we write

L  M)) with operations  and  defined by

(x1, y1)  (x2, y2) = (x1  x2, y1  y2), and

(x1, y1)  (x2, y2) = (x1  x2, y1  y2),

is called the product of two lattices. The product lattice of finite number of lattices will be

defined similarly (Refer Definition. 12.2.2.).

01

a1 b1

11

Lattice - L1

12

02

Lattice - L2

a3

03

13

b3

Lattice - L3

Centre for Distance Education 12.10 Acharya Nagarjuna University

12.3.6. Example: Consider the lattices L and M given here. Observe the product lattice of

L and M, which is also presented here.

12.4 SUMMARY:

We presented several important examples of lattices for better understanding of the concepts.
Later different types of homomorphisms were explained. Hasse diagrams of some lattices,
and a product lattice were also included.

12.5 TECHNICAL TERMS:

Product Lattice (Refer 12.2.2., 12.3.5.)

Lattice homomorhism
The function f is said to be a lattice homomorhism if it is both a join-homomorphism and a
meet-homomorphism.

x1

x2

x3

L

y3

y1

y2

y4

M

(x3, y2)

(x2, y4)

(x2, y2)

(x1, y2)

(x2, y1) (x1, y4)

(x1, y1)

(x1, y3)

(x2, y3)

(x3, y3)

(x3, y4)

L  M

(x3, y1)

Advanced Discrete Mathematics 12.11 Some Examples of Lattices…

12.6 SELF ASSESSMENT QUESTIONS:

1. Define product lattice.

2. Define different types of homomorphisms related to lattices.

3. Give an example of a order homomorphism which is not a meet homomorphism.

4. Give two examples of lattices, and draw Hasse diagrams.

5. Give three Hasse diagrams related to two lattices and their product lattice.

12.7 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Kuncham Syam Prasad.

LESSON 13

MODULAR AND DISTRIBUTIVE LATTICES

OBJECTIVE:

 To know Modular and Distributive Lattices.
 To understand the theorems on Modular and Distributive Lattices.
 To identify the difference between Modular and Distributive Lattices.
 To know diamond and pentagon lattices.

STRUCTURE:

13.1 Introduction
13.2 Modular Lattices.
13.3 Distributive Lattices.
13.4 Some more results on Distributive Lattices.
13.5 Summary
13.6 Technical Terms
13.7 Self Assessment Questions
13.8 Suggested Readings

13.1. INTRODUCTION:

In Lessons 11 and 12, we came to know the fundamentals, some examples, and some

important results on Lattices. In this lesson, we present two more important concepts:
Modular Lattice, and Distributive Lattice which plays vital role in the theory of lattices.
Examples to show the difference between these two concepts are also included. Few
theorems on this concepts were also presented.

13.2. MODULAR LATTICES:

13.2.1. Definition: (i). A lattice (L, , ) is called a modular lattice if it satisfies the

following condition: x  z  x  (y  z) = (x  y)  z for all x, y, z  L.

This condition is called as modular identity.

13.2.2. Example: Let (G, •) be a group and L be the set of all subgroups of G.

We define  ,  and on L as follows :

For N1, N2  L, define N1  N2 = N1•N2 and N1  N2 = N1  N2.

Then (L, , ) is a lattice.

Now we prove that this lattice L is a modular lattice.

Let N1 , N2 , N3  L and N1  N3.

From the set theory, we have that N1  (N2  N3)  (N1  N2)  N3.

-

Centre for Distance Education 13.2 Acharya Nagarjuna University

Now we have to prove that (N1  N2)  N3  N1  (N2  N3).

That is, (N1•N2) N3  N1•(N1 N3) .

Let x  (N1•N2) N3. Then x  N3 and x = y•z for some y  N1 and z  N2.

Now x  N3 and y  N1  x -1 y -1
 x  N1  N3.

Hence z = y -1
 x = e y -1x = x •(x -1 y -1x)  N3 (since x, x -1 y -1

 x  N3).

Thus z  N2 N3.  x = yz  N1•(N2 N3).

Hence (L, , ) is modular lattice.

13.2.3. Definition: Consider the lattice L1 = {0, a, b, c, 1} whose Hasse diagram is given.

This lattice L1 is a modular lattice.

This lattice is denoted by M5 (or V3
5) and it is called as diamond lattice.

13.2.4. Note: Consider the lattice L2 = {0, a, b, c, 1} whose Hasse diagram (pentagon

lattice) is given here. This lattice L2 is not a modular lattice.

[Verification: In a contrary way, suppose that this lattice L2 is a modular lattice. Since b

 c, by modular law, we have that b  (a  c) = (b  c)  c

  b  0 = 1  c  b = c, a contradiction.

Hence L2 is not a modular lattice.]

This lattice is denoted by N5 (or V4
5) and it is called as the pentagon lattice.

1

0

a c b Diamond Lattice L1

0

1

b

a c

Pentagon Lattice L2

 Advanced Discrete Mathematics 13.3 Modular and Distributive…

13.2.5. Lemma: A lattice (L, , ) is Modular 

x  {y  (x  z)} = (x  y)  (x  z) for all x, y, z  L.

Proof: Suppose L is a modular lattice and x, y, z  L.

Since x  x  z, by modular law, we have that x  {y  (x  z)} = (x  y)  (x  z).

Converse: Suppose x  {y  (x  z)} = (x  y)  (x  z) for all x, y, z  L.

Let x, y, z  L and x  z. Then x  z = z.

Now x  (y  z) = x  {y  (x  z)} (since z = x  z)

 = (x  y)  (x  z) (by the converse hypothesis)

 = (x  y)  z

This shows that L is a modular lattice.

13.2.6. Theorem: A lattice (L, , ) is a modular lattice  L contains no sublattice which

is isomorphic to N5 (the Pentagon lattice).

Proof: Suppose L has a sublattice S which is isomorphic to N5, the pentagon lattice.

We know that N5 is not a modular lattice (refer the Note 13.2.4.).

So we get that S is not a modular lattice and so L is not a modular lattice.

Converse: Suppose that L is not a modular lattice. Then there exist elements

x, y, z  L such that x  z and x  (y  z)  (x  y)  z.

We know that x  (y  z)  (x  y)  z.

So we have that x  (y  z) < (x  y)  z.

Part-(i): Write S = {t, a, b, c, s} where t = y  z, a = x  (y  z), b = (x  y)  z,

c = y and s = x  y.

Then we get that t  a < b  s … (i) and

 t  c  s … (ii)

Now t  a and t  c

  t  (a  c)  b  c (since a < b)

 = (x  y)  z  y

 = y  z = t. (by commutative, associative and absorption laws)

So we get that a  c = b  c = t … (iii)

Also s  b, s  c

Centre for Distance Education 13.4 Acharya Nagarjuna University

  s  b  c  a  c (since a < b)

 = x  (y  z)  y = x  y (by absorption law)

 = s

So we get that b  c = a  c = s …. (iv)

Now we can conclude that S is a sublattice of L.

Part-(ii): Now we prove that all the elements of S are distinct. We know that a < b.

Suppose t = c.

Then a  c = t = c (by (iii))

  c  a  a = a  c = s (by (iv)), a contradiction to (i).

This shows that t < c.

Part-(iii): Suppose c = s. Then c = s = b  c (by (iv))

  b  c  b = b  c  b = b  c = t (by (iii))

  b = t, a contradiction to (i).

This shows that c < s.

Part-(iv): Suppose that t = a.

Then s = a  c (by (iv))

 = t  c (since t = a, our supposition here)

 = c (since t  c)

  s = c, a contradiction to the fact that c < s.

 Part-(v): Suppose s = b. Then t = b  c (by (iii)) = s  c = c

 (since s = b, the supposition here), a contradiction to the fact that t < c.

Thus all the elements of S are distinct, and the Hasse diagram of the lattice S is given.

t

s

a

c b

S

 Advanced Discrete Mathematics 13.5 Modular and Distributive…

This shows that S is isomorphic to the pentagon lattice N5. The proof is complete.

13.3. DISTRIBUTIVE LATTICES:

 13.3.1. Definition: A lattice L is said to be a distributive lattice if it satisfies the

following laws:

 (i) x  (y  z) = (x  y)  (x  z), and

 (ii) x  (y  z) = (x  y)  (x z), for all x, y, z  L.

These two laws are called the distributive laws.

Theorem 13.3.4., says that the two laws (i) and (ii) given here are equivalent.

 13.3.2. Examples: (i) For any set X, the lattice (P(X),  , ) is a distributive lattice.

(ii) Every chain is a distributive lattice.

(iii) Consider the lattice L = (0, a, b, c, 1) whose Hasse diagram is given here. We can

observe that this lattice is a distributive lattice .

(iv) The “diamond lattice” V3
5 ; and the “pentagon lattice” V4

5 are not distributive lattices.

In V3
5 , a  (b  c) = a  1 = (a  b)  (a  c).

In V4
5, a  (b  c) = a  c = (a  b)  (a  c).

These are the two smallest non-distributive lattices.

1

0

a b c

Diamond V3
5

0

1

b
a

c

Pentagon V4
5

1

a

b c

0
9

L

Centre for Distance Education 13.6 Acharya Nagarjuna University

13.3.3. Theorem: Prove that the following properties of a lattice L are equivalent:

 (i) x  (y  z) = (x  y)  (x  z) for all x, y, z  L;

 (ii) (a b)  c = (a  c)  (b  c) for all a, b, c  L;

 (iii) (a b)  (b  c)  (c  a) = (a  b)  (b  c)  (c  a) for all a, b, c  L.

Proof: (i)  (ii): Suppose x  (y  z) = (x  y)  (x  z). for all x, y, z  L . So

(a  c)  (b  c) = [(a  c)  b]  [(a  c)  c] (by (i))

 = [(a  c)  b]  c (by commutative and absorption laws)

 = [(a b)  (c b)]  c (by (i))

 = (a b)  [(c b)  c] (by associative law)

 = (a b)  c (by absorption law)

This proves (ii).

(ii)  (iii): Suppose (ii).

(a b)  (b  c)  (c  a)

 = (a b)  [(b  c)  (c  a)]

 = {a  [(b  c)  (c  a)]}  {b  [(b  c)  (c  a)]} (by (ii))

 = {a  (b  c)}  {b  (c  a)} (by commutative, associative and absorption laws)

 = {(a  b)  (a  c)}  {(b  c)  (b  a)} (by (ii))

 = (a  b)  (b  c)  (c  a) (by idempotent law)

(iii)  (i): Suppose that a  c.

Then a  b  c  b  (a  b)  (c  b) = (c  b) ….. (*)

Also a  c = c. Now

(a  c)  (b  c) = (a  c)  [(a  b) (c  b)] (by (*))

 = (a  b)  (b  c) (c  a)

 = (a  b)  (b  c)  (c  a) (by (iii))

 = (a  b)  (b  c)  c (since a  c)

 = (a  b)  c (by absorption law)

Now we proved that (a  b)  c = (a  c)  (b  c).

This shows that (i) is true. The proof is complete.

13.3.4. Corollary: If L is a distributive lattice, then it is a modular lattice.

 Advanced Discrete Mathematics 13.7 Modular and Distributive…

Proof: Assume that L is a distributive lattice.

Let x, y, z  L and x  z. Then by the Theorem 13.3.3., we have that

(x  y)  (y  z)  (z  x) = (x  y)  (y  z)  (z  x).

Since x  z, we have that x  z = x and x  z = z, and so

 (x  y)  (y  z)  x = (x  y)  (y  z)  z

  x  (y  z) = (x  y)  z (by absorption laws).

This shows that L is a modular lattice.

13.3.5. Note: The converse of the Corollary 13.3.4, is not true. That is, there exist modular

lattices which are not distributive.

For example, consider the diamond lattice. This lattice is a modular lattice, but not a

distributive lattice.

13.3.6. Theorem: A modular lattice L is distributive  none of its sub lattices is

isomorphic to the Diamond Lattice L1 (the diamond lattice is also denoted by V3
5).

Proof: We know that V3
5 is not distributive.

In a contrary way, suppose that L has a sublattice S which is isomorphic to V3
5.

Then S is not distributive  L is not distributive, a contradiction.

Hence we conclude that L contains no sublattice which is isomorphic to the Diamond lattice.

Converse: Suppose that L is modular lattice which is not distributive.

Part-(i): Since L is not destributive, by the Theorem 13.3.3., there exists x, y, z  L

such that (x  y)  (y  z)  (z  x) < (x  y)  (y  z)  (z  x).

Write s = (x  y)  (y  z)  (z  x),

t = (x  y)  (y  z)  (z  x), a = s  (x  t), b = s  (y  t), and c = s  (z  t).

Part-(ii): Since L is modular and s < t, we have that

a = (s  x)  t, b = (s  y)  t and c = (s  z)  t.

1

0

a c b Diamond Lattice L1

Centre for Distance Education 13.8 Acharya Nagarjuna University

Now x  t = x  (x  y)  (y  z)  (z  x)

 = x  (y  z) (by absorption law) … (i)

Similarly, y t = y  (z  x) and z  t = z  (x  y) … (ii)

Now x  s = x  (x  y)  (y  z)  (z  x)

 = x  (y z) (by absorption law) … (iii)

Similarly, y  s = y  (z  x) and z  s = z  (x  y) ... (iv)

Part-(iii): Now a  b = s  (x  t)  s  (y  t) (by the definition of a and b)

 = s  (x  t)  (y  t) (by idempotent law)

 = s  {x  (y  z)}  {y  (z  x)} (by (i) and (ii))

 = s  {x  (y  z)  y}  (z  x)}

 (by modular law since x  (y  z)  x  z  x)

 = s  [{(x  y)  (y  z)}  (z  x)] (by modular law since y  y  z)

 = s  t (by the definition of t)

 = t (since s  t, by the definition of s and t).

Similarly, we can get that b  c = c  a = t.

So we got that a  b = b  c = c  a = t … (v)

Dually, we get that a  b = b  c = c  a = s … (vi)

Part-(iv): Now we prove that the elements s, a, b, c, t are all distinct.

Suppose s = a.

Then a  b = s (by (vi)) = a (by our supposition here), and c  a = (by (vi)) = a (by

our supposition here)

  a  b and a  c

  a  b = b and a  c = c.

  b = c = t (by (v))

  t = t  t = b  c = s (by (vi)), a contradiction to the fact that s < t.

Therefore s  a.

Similarly, we can prove that s  b and s  c.

Dually we get t  a, t  b, and t  c.

Part-(v): Suppose a = b.

Then s = a  b (by (vi)) = a (by the supposition here), a contradiction to the fact that a  s.

 Advanced Discrete Mathematics 13.9 Modular and Distributive…

Therefore a  b. Similarly we can get that b  c, and a  c.

Thus a, b, c are all incomparable.

This shows that the set S = {s, a, b, c, t} is a sublattice of L whose Hasse diagram is of

the form which is isomorphic to V3
5 .

The proof is complete.

13.3.7. Theorem: A lattice (L,  , ) is distributive  none of its sublattices is

isomorphic to either the pentagon lattice N5 or the Dimond lattice V3
5 .

Proof: The proof follows from the Theorem 13.2.6., and Theorem 13.3.6.

13.3.8. Example: (i). Let L be a lattice whose Hasse diagram is as follows.

Then L is a distributive lattice because it has no sublattice isomorphic to either the

Diamond lattice or the Pentagon lattice.

(ii). Let L be the lattice given by the following Hasse diagram.

1

0

a c b

1

a
b

o

c d

0

1

t

a

b
d

c

e

Centre for Distance Education 13.10 Acharya Nagarjuna University

Then L is not a modular lattice because the set

S = {o, a, b, d, 1} is a sublattice of L which is isomorphic to the Pentagon lattice.

Note that there exist some other sublattices of L which are isomorphic to the Pentagon

lattice. Finding the other sublattices of L which are ismorphic to the Pentagon lattice, was

left to the reader for exercise.

13.4 SOME MORE RESULTS ON DISTRIBUTIVE LATTICES:

13.4.1. Result: For a given lattice L, the following two conditions are equivalent:

 (i) x  (y  z) = (x  y)  (x  z), and

 (ii) x  (y  z) = (x  y)  (x z) for all x, y, z  L.

Proof: Part-(i): Suppose that

 x  (y  z) = (x  y)  (x  z) … (i)

Now (x  y)  (x  z) = [(x  y)  x]  [(x  y)  z] (by (i))

 = x  [(x  y)  z] (by commutative and absorption laws)

 = x  [z  (x  y)] (by commutative law)

 = x  [(z  x)  (z y)] (by (i))

 = [x  (z  x)]  [z y] (by associative law)

 = x  (z y) (by commutative and absorption law)

Part-(ii): Suppose that x  (y  z) = (x  y)  (x z) … (ii)

Now (x  y)  (x  z) = [(x  y) x]  [(x  y)  z] (by (ii))

 = x  [(x  y)  z] (by commutative and absorption laws)

 = x  [z  (x  y)] (by commutative law)

 = x  [(z  x)  (z y)] (by (ii))

 = [x  (z  x)]  [z y] (by associative law)

 = x  (z y) (by commutative and absorption law)

Therefore x  (z y) = (x  y)  (x  z). The proof is complete.

13.4.2. Theorem: A lattice L is distributive  the cancellation rule:

x  y = x  z, x  y = x  z  y = z holds for all x, y , z  L.

Proof: Suppose L is distributive.

Let x, y, z  L and x  y = x  z, x  y = x  z.

 Advanced Discrete Mathematics 13.11 Modular and Distributive…

Then y = (x  y)  y (by absorption law)

 = (x  z)  y (by given condition)

 = (x  y)  (z  y) (by distributive law)

 = (x  z)  (y  z) (by given condition)

 = (x  y)  z (by distributive law)

 = (x  z)  z (by given condition)

 = z (by absorption law)

Converse: Assume the cancellation rule.

In a contrary way, we suppose that L is not distributive. Then by the Theorem 13.3.7.,

we have that L contains a sublattice S = {u, a, b, c, v} which is isomorphic to either

the Pentagon lattice or the Diamond lattice.

In either case, we have that

 a b = a  c = u

 a  b = a  c = v

and b  c, which is a contraction to our assumed cancellation law.

This shows that L is a distributive lattice.

13.4.3. Definition: A lattice L with 0 and 1 is called complemented if for each x  L there

exists at least one element y such that x  y = 0 and x  y = 1.

Each such y is called a complement of x. We denote the complement of x by x1.

Pentagon lattice

u

v

a

b

c

v

u

a c b
Diamond lattice

Centre for Distance Education 13.12 Acharya Nagarjuna University

13.4.4. Examples: (i) Let L = P(M). Then B = M \ A is the unique complement of A.

 (ii) In a bounded lattice, 1 is a complement of 0, and 0 is a complement of 1.

 (iii) Every chain with more than two elements is not a complemented lattice.

 (iv) The complement need not be unique. For example, in the diamond lattice, both the

two elements b and c, are complements for the element a.

 (v) Let L be the lattice of subspaces of the vector space ℝ2. If T is a complement of a

subspace S, then S  T = {0} and S + T = ℝ2.

Hence a complement is a complementary subspace.

13.4.5. Theorem: If L is a distributive lattice, then every element x  L has at most one

complement.

Proof: Let L be a distributive lattice. Suppose x  L has two complements y1 and y2.

Then x  y1 = 1 = x  y2 and x y1 = 0 = x y2.

By the Theorem 13.4.2., we have that y1 = y2, a contradiction.

13.4.6. Definition: Let L be a lattice with zero. An element a  L is said to be an atom if

a  0 and if it satisfies the following condition:

 b  L, 0 < b  a  b = a.

13.4.7. Definitions: (i) An element a  L is said to be join-irreducible if it satisfies the

following condition: b, c  L, a = b  c  a = b or a = c.

 (ii) An element is said to be join-irreducible if it is not join-irreducible.

13.4.8. Lemma: Every atom of a lattice with zero is join-irreducible.

Proof: Let a be an atom and let a = b  c, a  b.

Then a = sup(b, c) and so b < a. Since a is an atom, we have that b = 0.

So a = b  c = 0  c = c. The proof is complete.

13.4.9. Lemma: Let L be a distributive lattice and let p  L be join-irreducible with p 

a  b. Then p  a or p  b.

 Advanced Discrete Mathematics 13.13 Modular and Distributive…

Proof: Given that p  a  b.

So p = p  (a  b)

 = (p  a)  (p  b) (by distributive law)

  p = p  a or p = p  b (since p is join-irreducible)

  p  a or p  b.

13.4.10. Lemma: Suppose L is a distributive lattice and

a  L. If a satisfies the condition: b, c  L, a  b  c  a  b or a  c,

then a is a join-irreducible element.

Proof: Assume the condition that a  b  c  a  b or a  c.

Let b, c  L such that a = b  c.

Then a  b  c and so we get that a  b or a  c.

But a = b  c  b  a and c  a. So, we get that a = b or a = c.

This shows that a is a join-irreducible element.

13.4.11. Theorem: Let L be a distributive lattice. Then an element p  L is join-irreducible

 p satisfies the following condition:

a, b  L, p  a  b  p  a or p  b.

Proof is the combination of Lemma 13.4.9 and Lemma 13.4.10.

13.4.12. Definitions: (i) If x  [a, b] = {v  L / a  v  b} and y  L with

 x  y = a and x  y = b, then y is called a relative complement of x with respect to

the interval [a, b].

(ii) If all intervals [a, b] in a lattice L are complemented, then L is called relatively

complemented.

(iii) If L has a zero element and all [0, b] are complemented, then L is called sectionally

complemented.

13.5 SUMMARY:

In this lesson, we presented two important concepts: Modular Lattice, and Distributive
Lattice which plays vital role in the theory of lattices. The diagrams for Diamond lattice and
pentagon lattice were also included. Examples to show the difference between the two

Centre for Distance Education 13.14 Acharya Nagarjuna University

concepts Modular lattice and distributive lattice given. Few theorems on this concepts were
also presented.

13.6 TECHNICAL TERMS:

Modular lattice
A lattice (L, , ) is called a modular lattice if it satisfies the following condition:
x  z  x  (y  z) = (x  y)  z for all x, y, z  L.

Diamond lattice (Definition 13.2.3).

Pentagon lattice (Definition 13.2.4)

Distributive lattice
A lattice L is said to be a distributive lattice if it satisfies the following laws:
 (i) x  (y  z) = (x  y)  (x  z), and
 (ii) x  (y  z) = (x  y)  (x z), for all x, y, z  L.

Complemented Lattice.
A lattice L with 0 and 1 is called complemented if for each x  L there exists at least one
element y such that x  y = 0 and x  y = 1.

13.7 SELF ASSESSMENT QUESTIONS:

1. Define Modular lattice and Distributive lattice. Also provide examples for each.

2. Prove that a lattice (L, , ) is a modular lattice  L contains no sublattice which is
isomorphic to N5 (the Pentagon lattice). (Theorem: 13.2.6.)

3. Prove that a modular lattice L is distributive  none of its sub lattices is isomorphic to
the Diamond Lattice L1 (the diamond lattice is also denoted by V3

5).
(Theorem 13.3.6.)

4. Define complemented lattice, and give an example.

5. Prove that a modular lattice L is distributive  none of its sub lattices is isomorphic to
the Diamond Lattice L1 (the diamond lattice is also denoted by V3

5).
(Theorem 13.3.6.)

6. Prove that a lattice L is distributive  the cancellation rule:
x  y = x  z, x  y = x  z  y = z holds for all x, y , z  L.
(Theorem 13.4.2.)

13.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

 Advanced Discrete Mathematics 13.15 Modular and Distributive…

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237 .

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Kuncham Syam Prasad

LESSON - 14

BOOLEAN POLYNOMIALS

OBJECTIVE:

 To know Polynomials with coefficients 0 and 1.
 To understand the Boolean polynomials.
 To identify different operations with Boolean polynomials.
 To understand equivalent expressions
 To know minterm or product term.
 To develop skills in finding dnf and cnf for a given expression.

STRUCTURE:

14.1 Introduction
14.2. Some definitions.
14.3. Boolean Polynomials
14.4. Normal Forms.
14.5. Disjunctive normal forms.
14.6. Conjunctive normal forms
14.7 Summary
14.8 Technical Terms
14.9 Self Assessment Questions
14.10 Suggested Readings

14.1. INTRODUCTION:

In this lesson, we study Boolean polynomials and equivalent expressions. We will make
learn to express the given Boolean polynomials in terms of disjunctive normal form and
conjunctive normal form.

14.2. SOME DEFINITIONS:

 In this section some important useful definitions and examples were included.

14.2.1. Definition: A complemented distributive lattice is called a Boolean algebra (or a

Boolean lattice).

14.2.2 Note: (i) By the Theorem 13.4.5. (of the lesson 13), we have that every element x

of a complemented distributive lattice, has unique complement (which is denoted by x1).

 (ii) From (i), we can conclude that every element x of a Boolean algebra, has unique

complement.

Centre for Distance Education 14.2 Acharya Nagarjuna University

14.2.3 Notation: Henceforth, we use B to denote a Boolean algebra. So B denotes a set

with the two binary operations  and , with zero element 0 and a unit element 1, and

the unary operation of complementation.

We write B = (B, , , 0, 1) or B = (B, , ), in short.

14.2.4 Examples: (i) Let M be a set and P(M) be the power set of M.

Then the system (P(M) , , , , M1) is a Boolean Algebra. Here  and  are the set-

theoretic operations: intersection and union, and the complement is the set-theoretic

complement (that is, M \ A = A1).

In this Boolean algebra, the elements  and M are the “universal bounds”.

If M contains exactly n elements, then P(M) contains exactly 2n elements.

(ii) Let ℬ be the lattice V1
2, where the operations are defined by

  0 1  0 1 1

 0 0 0 0 0 1 0 1

 1 0 1 0 1 1 1 0

Then (ℬ, ,, 0, 1, 1) is a Boolean algebra.

(iii) Consider the Boolean algebra ℬ given in (ii).

Let n be a positive integer.

Consider the set ℬn, the Cartesian product of n copies of ℬ.

The set ℬn is a Boolean algebra with respect to the operations given below:

(i1,…, in)  (j1,…, jn) := (i1  j1, …, injn),

(i1 ,…, in)  (j1,…, jn) := (i1 j1, …, injn), (i1,…, in)1 := (i11, …, in1), and

0 = (0, …, 0), 1 = (1, …, 1)

 (iv) Suppose ℬ1 , ℬ2 , … ℬn are Boolean algebras.

Consider ℬ = ℬ1 ℬ2 … ℬn, the Cartesian product of the Boolean algebras

ℬ1 ,ℬ2 , … ℬn .

V1
2

0

1

Advanced Discrete Mathematics 14.3 Boolean Polynomials

We define the operations  ,  and complementation in ℬ as follows:

 (i1,…, in)  (j1,…, jn) := (i1  j1, …, in  jn),

 (i1 ,…, in)  (j1,…, jn) := (i1  j1, …, in  jn),

 (i1,…, in)1 := (i1
1, …, in

1), and

0 = (0, …, 0), 1 = (1, …, 1)

where ik, jk  ℬk for 1  k  n.

It is easy to verify that ℬ = ℬ1 ℬ2 … ℬn is a Boolean algebra.

So ℬ is the direct product of the given Boolean algebras.

14.3. BOOLEAN POLYNOMIALS:

In this section, we study the concepts: Boolean polynomials and Polynomial functions.

14.3.1. Definition: Let X = {x1, …, xn} be a set of n symbols (called indeterminants or

variables). The Boolean polynomials in the variables x1, …, xn are the objects which can be

obtained by finitely many successive applications of the following:

(i) x1, x2, …, xn and 0, 1 are Boolean polynomials;

(ii) If p and q are Boolean polynomials, then p  q, p  q, and p1 are Boolean

polynomials.

14.3.2. Note: (i) Two polynomials P and Q are said to be equal if we get Q from P by

using the properties of Boolean algebra.

(ii) We write Pn = the set of all Boolean polynomials in n variables x1, …, xn .

14.3.3. Example: (i) The expressions 0, 1, x1, x1  1, x1  x2, x1
1, x2,

 x1
1  (x2  x1) are some examples of Boolean polynomials over {x1, x2}.

(ii) Since every Boolean polynomial over x1, …, xn is also a Boolean polynomial

Over x1, …, xn, xn+1, we have that P1  P2  ….  Pn  Pn+1  …

14.3.4. Definition: Let B be a Boolean algebra, Bn the direct product of n copies of

B, and p a Boolean polynomial in Pn. Then we define a function pB as follows: pB :

BnB; (a1, …, an) ↦pB (a1, …, an). This function pB is called the Boolean polynomial

Centre for Distance Education 14.4 Acharya Nagarjuna University

function induced by p on B. Here pB (a1, …, an) is the element in B which is

obtained from p by replacing each xi by ai  B, 1  i  n.

14.3.5. Example: Suppose that ℬ denotes the Boolean algebra {0, 1} with the usual

operations. Let n = 2, p = x1  x2, q = x2  x1.

Then pℬ : ℬ2ℬ: (0, 0) ↦ 0, (0, 1) ↦ 0, (1, 0) ↦ 0, (1, 1) ↦ 1; and

 qℬ: ℬ2↦ℬ: (0, 0) ↦ 0, (0, 1) ↦ 0, (1, 0) ↦ 0, (1, 1) ↦ 1. Therefore pℬ = qℬ.

14.3.6 Note: The Example 16.2.5 shows that the two different Boolean polynomials p and

q have the same Boolean polynomial function pℬ = qℬ.

14.3.7 Notation: Let B be a Boolean algebra. Using the notation introduced in the

Definition 14.3.4, we define Pn(B) = { ℬ / p  Pn }.

14.3.8 Theorem: Let B be a Boolean algebra. Then the set Pn(B) is a Boolean algebra,

and also it is a subalgebra of the Boolean algebra Fn(B) of all functions from Bn

 into B.

Proof: We have to verify that Pn(B) is closed with respect to  ,  , and 'the complement of

functions'. Also we have to verify that Pn(B) contains f0 and f1.

Let a1, …, an  B.

Then (B  B)(a1, …, an) = B(a1, …, an)  B(a1, …, an) = (a1, …, an)

 (B B) = .

Now we proved that for all B , B  Pn(B), B  B =  Pn(B).

For  and 1 we proceed similarly.

Also = f0, = f1 where f0 : BnB is defined by f0 (x) = 0;

and f1 : BnB defined by f1(x) = 1 for all x  Bn.

14.3.9 Definition: Two Boolean Polynomials p, q  Pn are equivalent

(in symbols p ~ q) if their Boolean polynomial functions on ℬ are equal.

That is, p ~ q  ℬ = ℬ.

14.3.10. Lemma: The relation ~ defined in 16.2.9 is an equivalence relation on Pn.

p

p q p q B)qp(

p q B)qp(

p q p q B)qp(

0 I

p q

Advanced Discrete Mathematics 14.5 Boolean Polynomials

Proof: Since ℬ = ℬ, we have that p ~ p for all p  Pn. Let p, q, r  Pn .

Suppose p ~ q  ℬ = ℬ  ℬ = ℬ  q ~ p.

Suppose p ~ q and q ~ r  ℬ = ℬ and ℬ = ℬ  ℬ = ℬ  p ~ r.

This shows that ~ is an equivalence relation.

14.3.11. Notation: (i) Consider the relation ~ defined in 16.2.9.

By the above lemma14.3.10, this relation is an equivalence relation.

(ii) The equivalence class containing an element p Pn is denoted by [p].

The set of all equivalence classes is denoted by Pn / ~ .

So we have that Pn / ~ = { [p] / p  Pn}.

14.3.12 Theorem: (i) Pn / ~ = { [p] / p  Pn} is a Boolean algebra with respect to the

usual operations on equivalence classes [p]  [q] := [p  q] and [p]  [q] := [p  q].

(ii) Pn/~ b Pn(ℬ).

Proof: (i) Suppose [p1] = [p2] and [q1] = [q2]. Then p1 ~ p2 and q1 ~ q2

  (p1)ℬ = (p2)ℬ and (q1)ℬ = (q2)ℬ

  (p1  q1)ℬ = (p2  q2)ℬ

  p1  q1 ~ p2  q2  [p1  q1] = [p2  q2].

In the same way, we get that [p1  q1] = [p2  q2].

Therefore the operations ,  on Pn / ~ are well defined.

Let [p], [q]  Pn / ~ . Then [p]  [q] = [p  q]  Pn / ~ .

Similarly, [p]  [q] = [p  q]  Pn / ~ . Therefore Pn / ~ is a lattice.

Now it is easy to verify that Pn / ~ is a Boolean algebra.

 (ii) Define a mapping h : Pn(ℬ)  Pn / ~ by h(p ℬ) : = [p].

Now we have that p ℬ = q ℬ  p ~ q  [p] = [q].

Therefore h is well defined and one-one.

Let [p]  Pn / ~ . Then p ℬ  Pn(ℬ) and h(p ℬ) : = [p]. This shows that h is onto.

Now h (p ℬ  q ℬ) = h ((qp)ℬ) = [(p  q)] = [p]  [q] = h (p ℬ)  h (q ℬ).

p p

p q q p

p q q r p r

Centre for Distance Education 14.6 Acharya Nagarjuna University

Also h (p ℬ  q ℬ) = h ((qp)ℬ)

 = [(p  q)] = [p]  [q] = h (p ℬ)  h (q ℬ), and

h[(p ℬ)1] = h (1p ℬ) = [p1] = [h(p ℬ)]1. Therefore h is a lattice homomorphism.

Also h(0 ℬ) = 0, h(1ℬ) = 1.

Since h(p ℬ)  h(1p ℬ) = h(p ℬ  1p ℬ) = h(0 ℬ) = 0, and h(p ℬ)  h(1p ℬ) = 1, we

have that h is a Boolean homomorphism. So h is a Boolean isomorphism.

14.3.13. Note: For any two equivalent polynomials, the corresponding polynomial functions

are equal (on any Boolean algebra).

14.3.14 Theorem: Let p, q  Pn, p ~ q, and B an arbitrary Boolean algebra.

Then ℬ = ℬ.

Proof: Since B is a finite Boolean algebra, we have that B is a Boolean subalgebra of

P(X) b ℬx for some set X. Now it is sufficient to prove the result for ℬx.

We know (from the definition) that

 p ~ q  ℬ = ℬ

  ℬ (i1, …, in) = ℬ (i1, …, in) for all i1, …, inℬ. Let f1, …, fnℬx .

Let x  X. For notational convenience we write A = ℬX
.

Now we have that (A (f1, …, fn))(x) = ℬ(f1(x), …, fn(x))

 = ℬ(f1(x),…, fn(x)) = (A (f1, …, fn))(x).

Hence A = A.

14.3.15 Notation: From now onwards, we simply write instead of B if the domain

of is clear. We may replace a given polynomial p by an equivalent polynomial which

is in more simple or more systematic form.

14.4. NORMAL FORMS:

14.4.1 Definition: Let N be a subset of Pn. Then N is said to be a system of normal

forms if it satisfies the following two conditions:

p q

p q

p q

p p

q q

p q

p p

p

Advanced Discrete Mathematics 14.7 Boolean Polynomials

(i) p  Pn  there corresponds q  N such that p ~ q;

(ii) q1, q2  N, q1  q2  q1 ≁ q2.

14.4.2 Notation: We write p + q for p  q, and pq for p  q.

14.4.3 Note : (i) Consider the function p = x1x2
1x3

1. It is clear that takes the value 1

only at (x1, x2, x3) = (1, 0, 0) and is zero elsewhere.

(ii) Consider the function q = x1x2
1x3

1 + x1x2x3.

This q takes value 1 exactly at (1, 0, 0) and (1, 1, 1).

14.4.4 Note : Let f be a function from ℬn into ℬ.

(i) we find out each (b1, …, bn) satisfying the condition: f(b1, …, bn) = 1.

Also we write down the corresponding product term … , where x1 = x

and x0 = x.

(ii) The sum p = induces the function = f .

Now we represented f as the sum of the product terms of the type … .

(iii) We replace each product term … in p by 1 … .

Note that in the representation for p, 1 is the coefficient of the term … .

(iv) We add to the representation of p the terms of the form 0 … for all the

terms … that do not appear in p . (Note that in the representation for p, 0 is the

coefficient of these additional terms …).

(v) Now by selecting different combinations of zeroes and ones as coefficient of these terms,

we get different functions ℬnℬ.

14.4.5 Notation: Consider the collection Nd of all polynomials in Pn of the form

… where each ,…,in is 0 or 1, and each ij is 0 or 1.

So we can write

Nd = { … / each ,…,in is 0 or 1, and each ij is 0 or 1}

14.4.6. Theorem: Nd is a system of normal forms in Pn.

Proof: Part-(i) In this part we prove that if p, q  Nd and p ~ q, then p = q.

p

1b
1x 2b

2x nb
nx


1)b,...,b(f

b
n

b
2

b
1

n1

n21 x...xx p

1c
1x nc

nx

1b
1x 2b

2x nb
nx 1b

1x 2b
2x nb

nx

1b
1x 2b

2x nb
nx

1c
1x nc

nx

1c
1x nc

nx

1c
1x nc

nx


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d

Centre for Distance Education 14.8 Acharya Nagarjuna University

Let p, q  Nd and p ~ q.

We follow the notation given in the above Notation 14.4.5.

Now p = { 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx }, and q = { 

)j,...,j(
j,...j

n1

n1
e 1j

1x … nj
nx } … (i)

Let (k1, k2, … kn)  {0, 1}n.

Since p ~ q, we have that p ℬ = q ℬ

  p ℬ (k1, k2, … kn) = q ℬ (k1, k2, … kn)

  { 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx }(k1, k2, … kn)

 = { 
)j,...,j(

j,...j

n1

n1
e 1j

1x … nj
nx }(k1, k2, … kn) … (ii)

Consider the L.H.S of (ii). If (k1, k2, … kn) = (i1, i2, … in), then

n21 i...iid 1i

1x … ni
nx (k1, k2, … kn) =

n21 i...iid .

If (k1, k2, … kn)  (i1, i2, … in), then
n21 i...iid 1i

1x … ni
nx (k1, k2, … kn) = 0.

Now consider the R.H.S of (ii).

If (k1, k2, … kn) = (j1, j2, … jn), then (
n1 j,...je 1j

1x … nj
nx) (k1, k2, … kn) =

n1 j,...je .

If (k1, k2, … kn)  (j1, j2, … jn), then (
n1 j,...je 1j

1x … nj
nx) (k1, k2, … kn) = 0.

This shows that
n21 k...kkd =

n1 k,...ke . This is true for all n-tuples (k1, k2, … kn).

Hence p = q.

Part-(ii): Write Nd(B) = { Bp / p  Nd}.

Now Nd(B) = { Bp / p  Nd }  Pn / ~   BN d  ~/Pn .

Write B = {0, 1} the Boolean algebra consisting of two elements.

We know that Fn(B) = {f : Bn  B}.

Define  : Nd(B)  Fn(B) by  (Bp)(i1, i2, … in) =
n21 i...iid

where p = 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx . Suppose q = 

)j,...,j(
j,...j

n1

n1
e 1j

1x … nj
nx .

Now  (Bp) =  (Bq) 
n21 i...iid =

n21 i...iie for all n-tuples (i1, i2, … in)

  p ~ q  Bp = Bq .

This show that  is well defined and one-one.

Advanced Discrete Mathematics 14.9 Boolean Polynomials

Part-(iii): Let f  Fn(B), then by above note f = p where p = 
1)b,...,b(f

b
n

b
1

n1

n1 x,...,x

 = 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx with

n21 i...iid = 1  f(i1, i2, … in) = 1.

Now  (Bp)(i1, i2, … in) =
n21 i...iid = f(i1, i2, … in). This shows that  is onto.

Part-(iv): From Part-(ii) and Part-(iii), we get that  is a bijection and

so  BN d =  BFn =
n22 .

Now  BN d  ~/Pn =  BPn   BFn (by the Theorem 14.3.8) =  BN d .

   BN d = ~/Pn =
n22 .

  For any q  Pn there exists Bp   BNd such that Bq = Bp .

14.5. DISJUNCTIVE NORMAL FORMS:

14.5.1. Definition: Nd = { … / each ,…,in is 0 or 1, and each ij is 0

or 1} is called the system of disjunctive normal forms. Each summand is called a minterm.

14.5.2. Corollary: (i) Nd has elements.

(ii) Pn splits into different equivalence classes.

 Proof: (i) There are 2n distinct product terms of the form ni
1x , …., ni

nx . Now the general

form of a sum of products can be represented as 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx . In this representation,

n1 i,,.,id is the coefficient of ni
1x , …., ni

nx . It is clear that
n1 i,,.,id = 0 or = 1.

Hence there exists
n22 such representations. This shows that Nd has

n22 elements.

 (ii) In the part-(iv) of the proof of the Theorem 14.4.6., we proved that ~/Pn =
n22 .

This shows that there exists
n22 equivalence classes.

In other words, we can say that Pn splits into
n22 different equivalence classes.

14.5.3. Definition: A Boolean algebra B is said to be polynomially complete

 if Pn(B) = Fn(B).


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d

n22
n22

Centre for Distance Education 14.10 Acharya Nagarjuna University

14.5.4. Corollaries: (i) |Pn/ ~| = and Pn(ℬ) = Fn(ℬ), where ℬ = {0, 1}.

This means the Boolean algebra ℬ is polynomially complete.

 (ii) If |B| = m > 2, then |Pn(B)| = |Pn/~ | = < = |Fn(B)|; and

so Pn(B)  Fn(B). This means if |B| > 2, then B is not polynomially complete.

 (iii) If p = , …, , then = (i1, …, in).

(iv) If pPn, then p ~ , …, .

 Proof: (i) By the Corollary 14.5.2. (ii), we have that |Pn / ~| =
n22 .

Since Pn(ℬ)  Fn(ℬ) and | Pn(ℬ) | =
n22 = | Fn(ℬ)|, we have that Pn(ℬ) = Fn(ℬ).

(ii) is clear.

(iii) Let p = )i,...,i(n1

n1 i,...,id 1i
1x , …, ni

nx . Let (j1, j2, … jn) be an n-tuple of {0, 1}.

Then p (j1, j2, … jn) = )i,...,i(n1

n1 i,...,id 1i
1x , …, ni

nx (j1, j2, … jn).

Consider the R.H.S.

If (i1, i2, … in)  (j1, j2, … jn), then the related term is zero.

If (i1, i2, … in) = (j1, j2, … jn), then the related term is equal to
n1 j,...,jd .

Therefore p (j1, j2, … jn) =
n1 j,...,jd .

 (iv) From (iii), we have that
n1 i,...,id = p (i1, …, in).

If p (i1, …, in) = 0, then
n1 i,...,id = 0, and so the term

n1 i,...,id 1i
1x , …, ni

nx = 0.

So in the representation p = )i,...,i(n1

n1 i,...,id 1i
1x , …, ni

nx , we may remove the terms
n1 i,...,id

1i
1x , …, ni

nx = 0 when p (i1, …, in) = 0.

If p (i1, …, in) = 1, then
n1 i,...,id = p (i1, …, in) = 1, and so the related term

n1 i,...,id 1i
1x , …, ni

nx = 1i
1x , …, ni

nx .

Hence we conclude that p ~  1)i,...,i(p n1
 1i

1x , …, ni
nx .

14.5.5. Example: We consider P2 the set of polynomials in two variables x1, x2.

Observe that the polynomial expressions 0x1
1x2

1 + 0x1
1x2 + 0x1x2

1 + 0x1x2, and 0 are

equivalent. So these two polynomials belongs to unique equivalence class in Pn/ ~.

Let us call this class as Class # 1.

n22

n22
nmm

)i,...,i(n1 n1 i,...,id 1i
1x ni

nx
n1 i,...,id p

 1)i,...,i(p n1

1i
1x ni

nx

Advanced Discrete Mathematics 14.11 Boolean Polynomials

Observe that the two polynomials 0x1
1x2

1 + 0x1
1x2+ 0x1x2

1 + 1x1x2, and x1x2 are

equivalent. So these two polynomials belongs to unique equivalence class in Pn/ ~.

Let us call this class as Class # 2.

In this way, we can find all |Pn/ ~| = = 16 equivalence classes.

These equivalence classes were presented in the Table-1.

Table-1

0x1
1x2

1 + 0x1
1x2 + 0x1x2

1 + 0x1x2, …, 0, …  Class # 1

0x1
1x2

1 + 0x1
1x2+ 0x1x2

1 + 1x1x2, …, x1x2,…  Class # 2

0x1
1x2

1 + 0x1
1x2 + 1x1x2

1 + 0x1x2, …,x1x…  Class # 3

…………………………………………………………………
…………………………………………………………………
…………………………………………………………………

1x1

1 + 1x1
1x2 + 1x1x2

1+1x1x2, …,1, …  Class # 16

Since a term with coefficient 0 is equal to zero, we may omit the terms with coefficient 0.

If 1 is the coefficient of a term, then by omitting 1 there is no change in the truth value of

the term. So if a term has the coefficient 1, then we may not write down the coefficient.

Note that the expressions 1x1x2 and x1x2 are different, but they are equivalent polynomial

expressions. So these two belong to unique equivalence class in Pn/ ~.

So we can take x1x2 has a representative of the class to which it belongs.

Such representatives from the equivalence classes 1 to 16 were presented in the Table-2.

Table-2

222

…, 0, …  Class # 1

…, x1x2 , …  Class # 2

…, x1x2
1, …  Class # 3

…,x1x2
1, + x1x2, …  Class # 4

…, x1
1x2, ….  Class # 5

…, x1
1x2 + x1x2, …  Class # 6

…, x1
1x2 + x1x2

1, …  Class # 7

…, x1
1x2 + x1x2

1 + x1x2,…  Class # 8

Centre for Distance Education 14.12 Acharya Nagarjuna University

Observe the Table-2. The expression x1x2
1 + x1x2 is a representative of class-4.

Now we have that x1x2
1 + x1x2 ~ x1(x2

1 + x2) ~ x1.1 ~ x1.

So instead of x1x2
1 + x1x2, we can take x1 as the representative of class-4.

Note that the representative x1 got simpler form.

In the Table-3, we present such simple representatives.

Table-3

…, 0, …  Class # 1

…, x1x2, …  Class # 2

…, x1x2
1, …  Class # 3

…, x1 ,…  Class # 4

…, x1
1x2, ….  Class # 5

…,x2,…  Class # 6

…,x1
1x2 + x1x2

1 ,…  Class # 7

…, x1 + x2, …  Class # 8

…, x1
1x2

1, …  Class # 9

…, x1
1x2

1 + x1x2 , …  Class # 10

…, x2
1, …  Class # 11

…, x1 + x2
1, …  Class # 12

…, x1
1, …  Class # 13

…, x1
1 + x2 …  Class # 14

…, x1
1 + x2

1 , …  Class # 15

…, 1, …  Class # 16

…, x1
1x2

1, …  Class # 9

…, x1
1x2

1 + x1x2, …  Class # 10

…, x1
1x2

1 + x1x2
1,…  Class # 11

…,x1
1x2

1 + x1x2
1 + x1x2,…  Class # 12

…, x1
1x2

1 + x1
1x2, …  Class # 13

…, x1
1x2

1 + x1
1x2 + x1x2,…  Class # 14

…, x1
1x2

1 + x1
1x2 + x1x2

1, …  Class # 15

x1
1x2

1 + x1
1x2+ x1x2

1 + x1x2,..  Class # 16

Advanced Discrete Mathematics 14.13 Boolean Polynomials

14.5.6. Note: (i) . Now we recollect the notation. Let e  {0, 1} for 1  i  n.

Define = xi if e = 1 = if e = 0

(ii). For any Boolean polynomial f in x1, x2, …, xn,

consider [f(e1, e2, …, en) …] = m0 m1 …  m(2
n

- 1), where

mi = f(d1, d2, …, dn) … and di = 0 or 1 for 1  I  n.

14.5.7. Example: Consider the function f(x1, x2) = ((x1x2) ) on two

variables x1 and x2, on the Boolean algebra B = {0, 1}.

Now f(0, 0) = ((0  0)1)  ((0  0)  01) = 01 (0  01) = 1  (0  1) = 1  1 = 1.

Similarly, f(0, 1) = 0, f(1, 0) = 0 and f(1, 1) = 0.

Here we have m0, m1, m2, m3 [because 3 = 2n - 1, where n is the number of the

variables]. Observe that m0 = f(0, 0)  x1
0  x2

0 = f(0, 0)  x1
1  = x1

1  .

m1 = f(0, 1)  x1
0  x2

1 = 0  x1
1  x2 = 0.

m2 = f(1, 0)  x1
1  x2

0 = 0  x1  = 0,

m3 = f(1, 1)  x1
1  x2

1 = 0  x1  x2 = 0.

Therefore [f(e1, e2)  ] = m0  m1  m2  m3

 =  0  0  0 = .

14.5.8. Lemma: Let f(x) be a Boolean polynomial in one variable x with coefficients from

the Boolean algebra B. Then f(x) = (f(1)  x)  (f(0) ).

Proof: (This proof is by inductive method). We know that the elements of B and x are

Boolean expressions.

Step-(i): Fix b  B and suppose f(a) = b for all a  B.

Then f is a constant function and f(1) = f(0) = b.

Now (f(1)  x)  (f(0)  1x) = (b  x)  (b  1x) = b  (x  1x) = b  1 = b = f(x).

Therefore in this case, the result is true.

Step-(ii): Suppose f(a) = x for all a  B. Then f(1) = x and f(0) = x.

Consider (f(1)  x)  (f(0)  1x) = (x  x)  (x  1x) = x  0 = x = f(x).

Therefore in this case, the result is true.

Step-(iii): Suppose the result is true for two Boolean polynomials f(x) and g(x).

e

ix ix

 1e

1x
2e

2x
ne

nx

1d

1x
2d

2x
nd

nx

 121 xx  1
2x

1
2x 1

2x

1
2x

ie

ix
2e

ix

1
1x 1

2x 1
1x 1

2x

1x

Centre for Distance Education 14.14 Acharya Nagarjuna University

Now f(x)  g(x) = [(f(1)  x)  (f(0)  1x)]  [(g(1)  x)  (g(0)  1x)]

 (by supposition)

 = (f(1)  x)  (g(1)  x)  (f(0)  1x)  (g(0)  1x)

 = [(f(1)  g(1))  x]  [f(0)  g(0))  1x] = [(f  g)(1)  x]  [(f  g) (0)  1x].

This shows that the result is true for the polynomials f  g.

Next we prove for f(x)  g(x).

f(x)  g(x) = [(f(1)  x)  (f(0)  1x)]  [(g(1)  x)  (g(0)  1x)] (by supposition)

 = {[(f(1)  x)  (f(0)  1x)]  (g(1)  x)}  {[(f(1)  x)  (f(0)  1x)]  (g(0)  1x)}

 = {[(f(1)  x)  (g(1)  x)]  [(f(0)  1x)  (g(1)  x)]}

  {[f(1)  x)  (g(0)  1x)]  [(f(0)  1x)  (g(0)  1x }}

 = {[f(1)  g(1)  x]  [0]}  {[0]  [f(0)  1x  g(0)]}

 = {[(f  g)(1)]  x}  {[(f  g)(0)]  1x }.

Step-(iv): Now we show that if the result is true for h(x) = 1x .

 [h(1)  x]  [h(0)  1x] = (0  x)  (1  1x) = 0  1x = 1x = h(x).

Since all the polynomials are written by using x, 1x , b, ,  and 1, we may conclude that

the result is true for all polynomials f(x) in one variable x with coefficients from the

Boolean algebra. Hence the lemma is proved for all polynomials f(x) in one variable x

with coefficients from the Boolean algebra.

14.5.9 Lemma: Boolean polynomial f(x1, x2, …, xn) is equal

to [f(1, x2, …, xn)  x1]  [f(0, x2, …, xn) ].

Proof: Write B*= the set of all Boolean polynomials in the variables x2, x3,…, xn.

Since B* is a Boolean algebra, we may consider a Boolean polynomial in the

variables x1, x2, …, xn as a Boolean polynomial h in the single variable x1 with

coefficients from the Boolean algebra B*.

Now f(x1, x2, …, xn) = h(x1) = (h(1)  x1)  (h(0) ) (by the Lemma 14.5.8.)

 = [f(1, x2, …, xn)  x1]  [f(0, x2, …, xn) ].

Hence f(x1, …, xn) = [f(1, x2, …, xn)  x1]  [f(0, x2, …, xn) ].

The proof is complete.

14.5.10. Theorem: If f(x1, x2, …, xn) is a Boolean polynomial, then

 f(x1, x2, …, xn) =  (f(e1, e2, …, en)   … ).

1
1x

1
1x

1
1x

1
1x

ie

1x
ne

nx

Advanced Discrete Mathematics 14.15 Boolean Polynomials

Proof: The proof is by induction on the number of variables.

If n = 1, then there is only one variable x. Then we have to show f(x) = (f(e)  xe).

Consider (f(e)  xe) = (f(1)  x1)  (f(0)  x0) = (f(1)  x)  (f(0)  x1).

This is true by the Lemma 14.5.8.

Assume the induction hypothesis, that is, the result is true for (n -1) variables.

Let f(x1, x2, …, xn) be a polynomial in n variables.

f(x1, x2, …, xn) = [f(1, x2, …, xn))  x1]  [f(0, x2 ,…, xn))  x1] (by the Lemma 14.5.9.)

= {[(f(1, e2, …, en)   … ]  x1}  {[(f(0, e2, …, en)   … ]  x1
1}

= {[f(1, e2, …, en)  x1
1   … ] }{ [f(0, e2, …, en)  x1

0   … ]}

=  [f(e1, e2, …, en)   … ]. The proof is complete..

14.5.11. Note: (i) An expression of the form   …  is called a product term

or minterm. The union of such product terms is called a sum of products.

(ii) A disjunctive normal form (d.n.f, in short) for a Boolean polynomial

 f(x1, x2, …, xn) is a sum of products (of the form  … ) which represents f

14.5.12. Black Box Method: (To find d.n.f of a given Boolean polynomial).

In this discussion, the coefficients in the Boolean Polynomial f are taken from the Boolean

Algebra {0, 1}.

Now the truth table of functional values of the polynomial f determines the disjunctive

normal form simply by including each product term that occurs when the function takes value

1.

 [If f do not take value 1, then f(d1, …, dn) = 0 and so the corresponding

mi = f(d1, …, dn) . … = 0 … = 0].

14.5.13. Example: Consider the function

 f(x1, x2, x3) = [x1  ()] {[(x1  x2) ]  x1}.

2e

2x
ne

nx
2e

2x
ne

nx

2e

2x
ne

nx
2e

2x
ne

nx

1e

1x
ne

nx

1e

1i
x

2e

2ix
ke

kix

1e

1i
x

2e

2ix
ke

kix

1d

1x
2d

2x
nd

nx
1d

1x
2d

2x
nd

nx

 132 xx  1
3x

x1 x2 x3 f(x1, x2, x3) 1f
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 0

Centre for Distance Education 14.16 Acharya Nagarjuna University

The functional values of f and f 1 are mentioned in the table.

 (i) From the table, it is clear that f takes value 1 only when (d1, d2, d3) = (1, 0, 0), (d1, d2,

d3) = (1, 1, 0), and (d1, d2, d3) = (1, 1, 1).

 Therefore m4 = f(d1, d2, d3)    = f(1, 0, 0)  x1
1  x2

0  x3
0

 = 1  x1   = x1. ;

 m6 = f(1, 1, 0)  x1
1  x2

1  x3
0 = x1x2 ;

m7 = f(1, 1, 1)  x1
1  x2

1  x3
1 = 1  x1  x2  x3 = x1x2x3.

Since mi = 0 for all i  {4, 6, 7}, we have that the disjunctive normal form is

 mi = x1 x1x2 x1x2x3.

 (ii) Next we find the disjunctive normal form for .

Observe the table. For five values of (d1, d2, d3) we have (d1, d2, d3) = 1.

By following the same steps as in (i), we get that

(x1, x2, x3) = x1
1x2

1x3
1  x1

1x2
1x3  x1

1x2x3
1  x1

1x2x3  x1x2
1x3.

14.6. CONJUNCTIVE NORMAL FORMS:

In this section we discuss another normal form named as Conjunctive normal form.

14.6.1. Note: (i) By the duality principle (also refer Theorem 14.5.10.), we have that

f(x1, x2, …, xn) =  [f(e1, …, en)   … ].

This form is called the conjunctive normal form (c.n.f., in short) of the function

 f(x1, x2, …, xn).

 (ii) We may represent this conjunctive normal form as follows:

f = + + … +).

(iii) It is clear that the conjunctive normal form of a given function f is the complement of

the disjunctive normal form of f 1(x).

(iv) In the above example, f 1(x1, x2, x3) = x1
1x2

1x3
1  x1

1x2
1x3  x1

1x2x3
1  x1

1x2x3  x1x2
1x3

is the disjunctive normal form of f 1. Therefore the conjunctive normal form is

 f = []

 = (x1
1x2

1x3
1)1  (x1

1x2
1x3)1  (x1

1x2x3
1)1  (x1

1x2x3)1  (x1x2
1x3)1

 = (x1  x2  x3).(x1  x2  x3
1).(x1  x2

1  x3). (x1  x2
1  x3

1).(x1
1  x2  x3

1).

1d

1x
2d

2x
3d

3x

1
2x 1

3x 1
2x 1

3x

1
3x

1
2x 1

3x 1
3x

 321
1 x,x,xf

1f

1f

1e1
1)x(ne1

n)x(


)i,...,i(

i,...,i

n1

n1
)d(1i

1x ni
nx

)x,x,x(f 321
1

Advanced Discrete Mathematics 14.17 Boolean Polynomials

14.6.2. Example: (i) Now we wish to find the disjunctive normal form of

p = ((x1 + x2)1x1 + x2
111)1 + x1x2 + x1x2

1. We list the values of in the table.

 Now (0, 0) = ((0 + 0)10 + 0111)1 + 00 + 001 = 0.

Similarly we get the values for (0, 1), (1, 0), and (1, 1).

Observe the table. We follow the block box method (See 14.5.12.).

b1 b2 (b1, b2)

0 0 0

0 1 1

1 0 1

1 1 1

Now we get that p = 0x1
1x2

1 +1x1
1x2 +1x1x2

1 + 1x1x2 = x1
1x2 + x1x2

1 + x1x2.

This is the d.n.f of p.

(ii) Observe that p = x1
1x2 + x1x2

1 + x1x2 = x1
1x2 + x1 (x2

1 + x2) = x1
1x2 + x1 (1)

= x1
1x2 + x1 = (x1

1 +x1)(x2 + x1) = (1)(x2 + x1) = x2 + x1.

Note that p reduced to its simpler form x2 + x1.

14.6.3. Note: To get a simple form of the given Boolean polynomial, we may follow the

following steps:

Step-(i): Find the disjunctive normal form.

Step-(ii): Reduce the d.n.f by using the laws of Boolean algebra.

14.6.4. Problem: Find a Boolean polynomial p that induces the function f given by the

following table:

b1 b2 b3 f (b1, b2, b3)

0 0 0 1 

0 0 1 0

0 1 0 0

0 1 1 1 

1 0 0 1 

1 0 1 0

1 1 0 0

1 1 1 0

p

p

p p p

p

Centre for Distance Education 14.18 Acharya Nagarjuna University

Solution: We marked the lines where the value of f is 1.

Write p = x1
1x2

1x3
1 + x1

1x2x3 + x1x2
1x3

1

(these product terms are related to the rows corresponding to the arrows).

Now p induces the function f.

14.6.5. Note: Consider f and p given in the Problem 14.6.4.

p =x1
1x2

1x3
1 + x1

1x2x3 + x1x2
1x3

1

 ~ x1
1x2

1x3
1 + x1x2

1x3
1 + x1

1x2x3 (by associative and commutative laws)

 ~ (x1
1 + x1) x2

1x3
1 + x1

1x2x3 (by distributive law)

 ~ x2
1x3

1 + x1
1x2x3.

Therefore p ~ q where q = x2
1x3

1 + x1
1x2x3.

So q is also a solution to our problem 14.6.4.

That is, = = f. In other words both q and p induces the same function f.

14.6.6. Problem: Find the c.n.f for p = x1
1x2 + x1x2

1.

Solution: The d.n.f for p was given. One way of getting c.n.f from d.n.f is to write p as

(p1)1. We expand p1 by using the de Morgan’s laws.

p = x1
1x2 + x1x2

1 ~ (x1
1x2 + x1x2

1)11 ~ ((x1
1x2 + x1x2

1)1)1

 ~ ((x1 + x2
1) (x1

1 + x2))1 ~ (x1x1
1 + x1x2 + x2

1x1
1 + x2

1x2)1

 ~ (x1x2 + x2
1x1

1)1 (by complement laws) ~ (x1
1 + x2

1) (x1 + x2).

Now p gets the form "product of sums form". This form is the required c.n.f.

14.7 SUMMARY:

In this lesson, we studied Boolean polynomials in n variables, and equivalent expressions.
We will make learn to express the given Boolean polynomials in terms of disjunctive normal
form and conjunctive normal form. Few necessary examples were included for the
convenience of the reader to learn to obtain disjunctive normal form and conjunctive normal
form for the given Boolean polynomials.

14.8 TECHNICAL TERMS:

System of normal forms
Let N be a subset of Pn. Then N is said to be a system of normal forms if it satisfies the
following two conditions: (i) p  Pn  there corresponds q  N such that p ~ q; and
(ii) q1, q2  N, q1  q2  q1 ≁ q2.

Product term (or minterm).

An expression of the form   …  is called a product term or minterm.

q p

1e

1i
x

2e

2ix
ke

kix

Advanced Discrete Mathematics 14.19 Boolean Polynomials

Disjunctive normal form:
 Boolean polynomial f(x1, x2, …, xn) which is a sum of products (of the

form  … ) that represents the given Boolean polynomial f is named as

disjunctive normal form of f.

Conjunctive normal form:
The form f = + + … +) is named as the conjunctive normal form of f.

14.9 SELF ASSESSMENT QUESTIONS:

1. Write the Boolean function values for f : A2 → A, where A = {0, 1} with

f (x1, x2) =   211 xxx  .
Ans / Solution:

 (x, y) f
(0, 0) 0
(0, 1) 1
(1, 0) 0
(1, 1) 1

2. Consider the Boolean polynomial f (x, y, z) = x  (y  z1). If B ={0, 1}, compute the

truth table of the function f : B3 → B defined by f.

[that is, If B = {0, 1}, compute the truth table of the function f: B3 → B defined by f].

Ans:

x y z  1zyx 

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

3. Rewrite (or simplify) the given Boolean polynomial to obtain the requested format.
 (i). (x  y1 z)  (x  y  z) ; two variables and one operation.
 (ii). (y  z)  x1 (w  w1)1 (y  z1) ; two variables and two operations.

Ans: (i). x  z. (ii). y  x1.

4 . Write the disjunctive and conjuctive normal form for

 f (x1, x2, x3) = [  321 xxx ]     1321 xxxx  , by writing minterms and maxterms.

1e

1i
x

2e

2ix
ke

kix


)i,...,i(

i,...,i

n1

n1
)d(1i

1x ni
nx

Centre for Distance Education 14.20 Acharya Nagarjuna University

Ans / Hint / Solution: Minterms : 321 xxx  , 321 xxx  , 321 xxx 

 Disjunctive normal form :      321321321 xxxxxxxxx 

Maxterms : 321 xxx  , 321 xxx  , 321 xxx  , 321 xxx  , 321 xxx  .

 Conjunctive normal form :

         321321321321321 xxxxxxxxxxxxxxx  .

5. Find the c.n.f. for p =x1

1x2 + x1x2
1.

Ans / Hint / Solution: (x1
1 + x2

1) (x1 +x2).

14.10 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr Kedukodi Babushri Srinivas

 .

LESSON - 15

FINITE BOOLEAN ALGEBRAS

OBJECTIVE:

 To know the Extended notion of lattice: Boolean algebra.
 To know the Important theorem namely representation theorem
 To Learn various properties of Boolean algebras

 STRUCTURE:

15.1 Introduction[9[1
15.2 Boolean algebras and Properties
15.3 Representation Theorem
15.4 Summary
15.5 Technical Terms
15.6 Self Assessment Questions
15.7 Suggested Readings

15. 1. INTRODUCTION:

In 1854, George Boole (1815 - 1864) tried to find a mathematical model for human
reasoning, and he introduced an important class of algebraic structure. In his honor this
structure is called as ‘Boolean algebra’. This Boolean algebra is a special type of lattice.

Boolean Algebra is an algebra of logic. One of the earliest investigators of symbolic
logic was George-Boole who invented a systematic way of manipulating logic symbols which
was referred as Boolean Algebra. It has become now an indispensable tool to computer
scientists because of its direct applicability to switching circuit theory in physics, and the
logical design of digital computers. The symbols 0 and 1 used in this unit have certian
logical significance.

15.2. BOOLEAN ALGEBRAS AND PROPERTIES:

Now we recollect some important definitions and examples which are essential in the study
of this Lesson.

15.2.1. Definition: A complemented distributive lattice is called a Boolean algebra (or a

Boolean lattice).

15.2.2 Note: (i) By the Theorem 13.4.5. (of the lesson 13), we have that every element x

of a complemented distributive lattice, has unique complement (which is denoted by x1).

(ii) From (i), we can conclude that every element x of a Boolean algebra, has unique

complement.

Centre for Distance Education 15.2 Acharya Nagarjuna University

15.2.3 Notation: Henceforth, we use B to denote a Boolean algebra. So B denotes a set

with the two binary operations  and , with zero element 0 and a unit element 1, and

the unary operation of complementation.

We write B = (B, , , 0, 1) or B = (B, , ), in short.

15.2.4 Examples: (i) Let M be a set and P(M) be the power set of M.

Then the system (P(M) , , , , M1) is a Boolean Algebra. Here  and  are the set-

theoretic operations: intersection and union, and the complement is the set-theoretic

complement (that is, M \ A = A1).

In this Boolean algebra, the elements  and M are the “universal bounds”.

If M contains exactly n elements, then P(M) contains exactly 2n elements.

(ii) Let ℬ be the lattice V1
2, where the operations are defined by

  0 1  0 1 1

 0 0 0 0 0 1 0 1

 1 0 1 0 1 1 1 0

Then (ℬ, ,, 0, 1, 1) is a Boolean algebra.

(iii) Consider the Boolean algebra ℬ given in (ii). Let n be a positive integer.

Consider the set ℬn, the Cartesian product of n copies of ℬ.

The set ℬn is a Boolean algebra with respect to the operations given below:

(i1,…, in)  (j1,…, jn) := (i1  j1, …, injn),

(i1 ,…, in)  (j1,…, jn) := (i1 j1, …, injn), (i1,…, in)1 := (i11, …, in1), and

0 = (0, …, 0), 1 = (1, …, 1)

(iv) Suppose ℬ1 , ℬ2 , … ℬn are Boolean algebras.

Consider ℬ = ℬ1 ℬ2 … ℬn, the Cartesian product of the Boolean algebras

ℬ1 ,ℬ2 , … ℬn .

We define the operations  ,  and complementation in ℬ as follows:

V1
2

0

1

 Advanced Discrete Mathematics 15.3 Finite Boolean Algebras

 (i1,…, in)  (j1,…, jn) := (i1  j1, …, in  jn),

 (i1 ,…, in)  (j1,…, jn) := (i1  j1, …, in  jn),

 (i1,…, in)1 := (i1
1, …, in

1), and 0 = (0, …, 0), 1 = (1, …, 1)

where ik, jk  ℬk for 1  k  n.

It is easy to verify that ℬ = ℬ1 ℬ2 … ℬn is a Boolean algebra.

So ℬ is the direct product of the given Boolean algebras.

15.2.5 Theorem (De Morgan’s Laws): For all x, y in a Boolean Algebra B, we have

that (x  y)1 = x1  y1 and (x  y)1 = x1  y1.

Proof: We have (x  y)  (x1  y1)

 = (x  x1  y1)  (y  x1  y1) (by distributive law)

 = (1  y1)  (1  x1) (by complement laws)

 = 1  1 (by universal bound laws)

 = 1 (by idempotent laws).

Also (x  y)  (x1  y1) = (x  y  x1)  (x  y  y1) (by distributive law)

 = (0  y)  (x  0) (by complement laws)

 = 0  0 (by universal bound laws)

 = 0 (by idempotent laws).

From the facts proved above, we can conclude that x1  y1 is the complement of x  y.

The other part follows from the duality principle.

15.2.6 Corollary: In a Boolean algebra B, we have x  y  x1  y1 for all x, y  B.

Proof: We have x  y  x  y = y (by the definition of )

  (x  y)1 = y1 (by taking complement)

  x1  y1 = y1 (by the Theorem 15.2.5)

  x1  y1 (by the definition of )

15.2.7 Theorem: In a Boolean algebra B, the following conditions are equivalent:

(i) x  y; (ii) x  y1 = 0 ; (iii) x1  y = 1 ; (iv) x  y = x ; and

(v) x  y = y for all x, y  B.

Proof: (i)  (ii): x  y  x = x  y

  x  y1 = x  y  y1 = x  0 = 0.

 (ii)  (iii): (x  y1) = 0

Centre for Distance Education 15.4 Acharya Nagarjuna University

  (x  y1)1 = 01 = 1  x1  y = 1

(iii)  (iv): (x 1 y) = 1

  x  1 = x  (x1  y)

  x = (x  x1)  (x  y) = 0  (x  y) = x  y.

(iv)  (v): x  y = x

  (x  y)  y = x  y  y = x  y.

(v)  (i) follows from the definition of  .

15.2.8 Definition: Let B1 and B2 be Boolean algebras. Then a mapping f : B1 B2 is

said to be a (Boolean) homomorphism from B1 into B2 if f is a (lattice) homomorphism

and f (x1) = (f (x))1 for all x  B.

Equivalently, we can define the Boolean homomorphism as follows:

Let B1 and B2 be Boolean algebras. A mapping f : B1B2 is said to be a (Boolean)

homomorphism from B1 into B2 if it satisfies the following three conditions:

(i) f (x  y) = f (x)  f (y);

(ii) f (x  y) = f (x)  f (y); and

(iii) f (x1) = (f (x))1, for all x, y  B1.

15.2.9 Definition: Let f : B1B2 be a Boolean homomorphism.

(i) If f is one-one, then we say that f is a monomorphism.

(ii) If f is onto, then we say that f is an epimorphism.

(iii) If f is a bijection, then we say that f is an isomorphism.

If there is a Boolean isomorphism between B1 and B2, then we write B1 b B2.

15.2.10 Theorem: Let f : B1B2 be a Boolean homomorphism. Then

(i) f(0) = 0, f(1) = 1;

(ii) for all x, y  B1, x  y  f(x)  f(y); and

(iii) f(B1) is a Boolean subalgebra of B2.

Proof: Let a, b  B1.

(i) Now f (0) = f (a  a1) (by complement law)

 = f (a)  f (a1) (since f is a homormorphism)

 = f (a)  (f(a))1 (since f is a homormorphism)

 = 0 (by the complement laws).

 Advanced Discrete Mathematics 15.5 Finite Boolean Algebras

Also f (1) = f (a  a1) (by the complement law)

 = f (a)  f (a1) (since f is a homormorphism)

 = f (a)  ((f (a))1 (since f is a homormorphism)

 = 1 (by complement law).

The proof is complete for (i).

 (ii) Suppose a  b.

Then a = a  b

  f (a) = f (a  b) = f (a)  f (b) (since f is ahomormorphism)

  f (a)  f (b) (by the definition of ).

(iii) To show that f (B1) is a Boolean subalgebra, it is enough to prove that f (B1) is

closed under the operations , , and 1 . Now let f (a), f (b)  f (B1).

So f (a)  f (b) = f (a  b)  f (B1) (since a  bB1);

And f (a)  f (b) = f (a  b)  f (B1) (since a  b  B1);

and [f(a)]1 = f(a1)  f (B1) (since a1  B1).

This shows that f (B1) is a Boolean subalgebra of B2.

15.2.11 Example: (i) If M  N, then the mapping f : P(M) P(N) defined by f(A) = A,

is a lattice monomorphism, but not a Boolean homomorphism.

To verify this, let A  P(M).

Now f(A1) = f(M \ A) = M \ A  N \ A = N \ f(A) = (f(A)1.

This shows that f is not a Boolean homomorphism.

Also f (1) = f (M) = M  N = the unit element in P(N).

 (ii) Suppose M = {1, …, n}. Then {0, 1}n and P(M) are Boolean algebras.

The mapping f : {0, 1}nP(M) defined by f ((i1, …, in)) = {k / ik = 1}, is a Boolean

isomorphism. (verification is straight forward).

 (iii) Let X be a set, and A a subset of X.

We know that the characteristic function of A is defined as:

A : X {0, 1}; x↦







A x if 0

A x if 1
.

Define h : P(X)  {0, 1}x as follows: h(A) = A .

This mapping h is a Boolean isomorphism. So P(X) b {0, 1}x.

Centre for Distance Education 15.6 Acharya Nagarjuna University

15.2.12 Definitions: If x  [a, b] = {v  L  a ≤ v ≤ b} and y  L

with x  y = a and x  y = b, then y is called a relative complement of x with respect to [a,

b]. If all intervals [a, b] in a lattice L are complemented, then L is called relatively

complemented. If L has a zero element and all [0, b] are complemented, then L is called

sectionally complemented.

15.2.13 Theorem: Let L be a lattice. Then we have the following:

(i) L is a Boolean algebra  L is relatively complemented

(ii) L is relatively complemented  L is sectionally complemented.

(iii) L is finite and sectionally complemented  every non-zero element a of L is a

join of finitely many atoms.

(iv) If B is a finite Boolean algebra, then every element x in B is equal to the union of

atoms that are  x.

Proof: (i) Let L be a Boolean algebra and let a  x  b. Define y := b  (a  x1).

Now we prove that y is a complement of x in [a, b].

We have x  y = x  (b  (a  x1))

 = x  (a  x1) (by modular law and x  b)

 = (x  a)  (x  x1) (by distributive law)

 = x  a (since x  x1 = 0)

 = x (since x  a) .

Also we have x  y = x  (b  (a  x1))

 = x  (b  a)  (b  x1)) (by distributive law)

 = x  a  (b  x1) (since a  b)

 = x  (b  x1) (since a  x)

 = (x  b)  (x  x1) (by distributive law)

 = b  1 (since x  b, and by complement law)

 = b (by universal bound laws).

This shows that y is the complement of x in [a, b].

Thus L is relatively complemented.

 (ii) Suppose L is relatively complemented. Then by definition [a, b] is complemented

for all a, b  L such that a  b.

Since 0 ≤ b, we have [0, b] is complemented for all b  L.

 Advanced Discrete Mathematics 15.7 Finite Boolean Algebras

Therefore L is sectionally complemented.

 (iii) Let a  L. Suppose { x  x is an atom and x  a} = {p1, …, pn}.

Write b = p1  …  pn.

Since each pi  a , we have that b  a. We have to show that b = a.

In a contrary way, suppose b  a. Suppose c is the complement of b in [0, a].

Now c  0 (if c = 0, then a = b  c = b  0 = b, a contradiction).

Since c is non-zero, there exists an atom p such that p  c.

Since p  c  a, we have that p  {p1, …, pn}.

Now p = pi  b. So p = p  b  c  b = 0, a contradiction.

Hence a = b. Therefore we get that a = p1  …  pn.

(iv) Follows from the facts proved above.

15.3. REPRESENTATION THEOREM:

In this section we prove a representation theorem of Boolean algebra, namely Stone’s
Representation Theorem.

15.3.1 Theorem: (Representation Theorem) Let B be a finite Boolean algebra, and A

denotes the set of all atoms in B. Then B is Boolean isomorphic to P(A).

That is, (B, , ) b (P(A), , ).

Proof: Part-(i): Let v  B be an element and write

 A(v) := {aA / a  v} := {a / a is an atom and a  v}.

Consider the mapping h : BP(A) defined by h(v) = A(v).

We show that h is a Boolean isomorphism.

Part-(ii): In this part, we show that h is a Boolean homomorphism.

Let a be an atom and for v, wL. we have a  A(v  w)

  a  v  w  a  v and a  w (by definition of )

  a  A(v)  A(w).

This proves that h(v  w) = h(v)  h(w).

Also we have a  A(v  w)  a  v  w

  a  v or a  w (by definition of )

  a  A(v)  A(w).

This shows that h(v  w) = h(v)  h(w).

Centre for Distance Education 15.8 Acharya Nagarjuna University

Now a  A(v1)  a  v1  a = a  v1 (by the definition of )

  a  v = a  v1  v  a  v = a  0 = 0  a

  a ≰ v (by the definition of )  a  A(v)  a  A \ A(v).

This shows that h(v1) = (h(v))1. Hence h is a Boolean isomorphism.

Part-(iii): Note that h(0) =  (by the definition of h).

By the Theorem 15.2.13 (iv), we have that every v  B can be expressed as the join of

finitely many atoms: v = a1  …  an with a1  v, for all i.

Now we show that h is one-one.

For this, suppose h(v) = h(w). That is, A(v) = A(w).

Then ai  A(v)  ai A(w)  ai  w. This is true for all i.

Therefore v = a1  …  an  w  v  w.

In the same way, we can show that w  v.

Hence v = w. This shows that h is one-one.

Part-(iv): Now we show that h is onto. For this, take C  P(A).

Suppose C = {c1, …, cn}, and write v = c1  …  cn.

Now A(v)  C, and so h(v)  C.

Conversely, a  h(v), then a is an atom with a  v = c1  …  cn and so a  ci,

for some i  {1, …, n}. Since a and ci are atoms, we have that a = ci  C.

Therefore h(v)  C.

Hence h(v) = C. This shows that h is onto. The proof is complete..

15.3.2 Theorem: (i) The cardinality of a finite Boolean algebra B is always of the form

2n, where n is the number of atoms in B. Also B b P({1, …, n}).

(ii) If B1, B2 are two finite Boolean algebras such that the number of atoms in each is n,

then we have that B1 b P({1, …, n}) b B2, and so B1 b B2.

(iii) By the observation made in the Example 15.2.11 (ii), we have that for every finite

Boolean algebra B  {0}, there is some n  ℕ with B b {0, 1}n .

15.3.3 Note: The lattice of the divisors of 30, that is, the Boolean algebra

 B = ({1, 2, 3, 5, 6, 10, 1, 30}, gcd, lcm, 1, 30, complement with respect to 30), has 8 = 23

elements. So it is isomorphic to the eight element Boolean algebra P({a, b, c}) (that is, the

power set of three elements) for some three distinct elements a, b, c.

 Advanced Discrete Mathematics 15.9 Finite Boolean Algebras

15.3.4 Note: In the following, we present all non-isomorphic Boolean algebras of order 

8 (= 2 3).

15.3.5 Remark: (i) Every finite Boolean algebra is isomorphic to the Boolean algebra P(A)

where A is set of all atoms of B.

(ii) In case of infinite Boolean algebras we have the following result: "if B is an infinite

Boolean algebra, then there is a set M and a Boolean monomorphism (called “Boolean

embedding”) from B to P(M)". This result is known as Stone’s Representation Theorem.

15.3.6 Definition: Let B be a Boolean algebra and let X be a set. For any two

mappings f and g from X into B, we define the functions

f  g, f  g, f 1, f0, f1 from X into B, as follows:

 f  g : XB by (f  g) (x) = f(x)  g(x);

 f  g : XB by (f  g)(x) = f(x)  g(x);

 f 1 : XB by (f 1)(x) = (f(x))1;

 f0 : XB by f0 (x) = 0; and f1 : XB by f1(x) = 1 for all x  X.

15.3.7 Result: Let B be a Boolean algebra and let X be a set. For any two mappings f

and g from X into B, we defined the functions f  g, f  g, f 1, f0, f1 from X into B, in

the definition 15.3.6.

(i) Write BX = the set of all mappings from X into B.

Then (BX,  ,  , f0 , f1, 1) is a Boolean algebra.

ℬ3

ℬ0= V1
1 ℬ1= V1

2 ℬ2= V1
4

Centre for Distance Education 15.10 Acharya Nagarjuna University

(ii) If X = Bn (the Cartesian product of n copies of B), then we write

Fn(B) :=
nBB (the set of all functions from Bn to B).

Now it is clear that Fn(B) is Boolean algebra.

15.3.8 Theorem: If S1 = {x1, x2, …..xn} and S2 = {y1, y2, …. yn} are any two finite sets with

n elements, then the lattices (P(S1), ) and (P(S2), ) are isomorphic.

Consequently, the Hasse diagrams of these lattices may be drawn identically.

Proof: Arrange the sets as known in Fig. 1,

so that each element of S1 is directly over the correspondingly numbered element in S2

Fig. 1

Let A be a subset of S1

Define f (A) = subset of S2 consisting of all elements that correspond to the elements of A .

It can be easily seen that f is one-one and onto.

Also A  B if and only if f (A)  f (B) for all A, B  P(S1).

Therefore the lattices (P(S1), ) and (P(S2), ) are isomorphic.

15.4 SUMMARY:

This unit provided the fundamental idea of the algebraic system namely Boolean algebra with
two binary operations (join and meet) and a unary operation (complementation). Several
properties of the Boolean algebras were discussed. The reader able to know the applications
of Boolean algebra in various branches like computer science, electrical engineering
(switching networks), and so on. Particularly, devices such as mechanical switches, diodes,
magnetic dipoles, and transistors are two state devices. In case of two state devises, the
Boolean logic can be applied. The important example of finite Boolean algebra is the power
set of A for any finite set A. Few examples and fundamental results related to Boolean
algebra were included for better understanding of the reader.

15.5 TECHNICAL TERMS:

Boolean algebra:
A complemented distributive lattice is called as Boolean algebra.

S1 : x1 x2 ... xn

 S2 : y1 y2 … yn

 S1 : x1 x2 x3 x4 …xn

 S2 : y1 y2 y3 y4 …yn

A

f (A)

 Advanced Discrete Mathematics 15.11 Finite Boolean Algebras

Finite Boolean Algebra:
A Boolean Algebra with finite number of elements is called a finite Boolean Algebra.

De Morgan’s Laws:
For all x, y in a Boolean Algebra B, we have that (x  y)1 = x1  y1 and
(x  y)1 = x1  y1. These two laws are called as De Morgan Laws.

Boolean homomorphism

Let B1 and B2 be Boolean algebras. A mapping f : B1B2 is said to be a (Boolean)
homomorphism from B1 into B2 if it satisfies the following three conditions:
(i) f (x  y) = f (x)  f (y); (ii) f (x  y) = f (x)  f (y); and
(iii) f (x1) = (f (x))1, for all x, y  B1.

Representation Theorem
 Let B be a finite Boolean algebra, and A denotes the set of all atoms in B. Then B is
Boolean isomorphic to P(A), the power set of A.

15.6 SELF ASSESSMENT QUESTIONS:

1. Find: Whether or not the lattice D20 ={1, 2, 4, 5, 10, 20 }is a Boolean algebra ?

Ans: The number of elements in the given set is six. We know that in any Boolean algebra the
number of elements is of the form 2 n . Here 6  2 n (for any positive integer n), and hence the
given set can not be a Boolean algebra.

2. Whether or not the lattice D30 = {1, 2, 3, 5, 6, 10, 15, 30} a Boolean algebra ?
Ans: The given set has 23elements. This set is Boolean isomorphic to the power set of a set

of three elements. and hence it is a Boolean algebra.

3. Let S = {a, b, c}, T = {2, 3, 5}. Show that the Boolean lattices (P(S), ) and
(P(T) , ) are isomorphic.
Ans: Define f : P(S)  P(T) by f ({a}) = {2}, f ({b}) = {3}, f ({c}) = {5},
 f ({a, b}) = {2,3}, f ({b, c}) = {3, 5}, f ({a, c}) = {2, 5}, f ({a, b, c}) = {2, 3, 5},
f () = . Then f is an isomorphism.

4. Show that ({1, 2, 3, 6, 9, 18}, gcd, lcm) does not form a Boolean algebra for the set of
positive divisors of 18.
Ans: (Similar answer as in above 1). The number of elements in the given set is six. We know
that in any Boolean algebra the number of elements is of the form 2 n . Here 6  2 n (for any
positive integer n), and hence the given set can not be a Boolean algebra.

5. Define the system Boolean algebra and give two examples.
Ans: (Refer: Definition 15.2.1, and Examples 15.2.4.)

6. State representation theorem and prove it.
Ans: (Refer: Theorem 15.3.1.)

7. Give all the non-isomorphic Boolean algebras of order  8 (= 2 3).

Ans: (Refer Note 15.3.4)

Centre for Distance Education 15.12 Acharya Nagarjuna University

8. If L is a lattice, then prove the following:

(i) L is a Boolean algebra  L is relatively complemented

(ii) L is relatively complemented  L is sectionally complemented.

(iii) L is finite and sectionally complemented  every non-zero element a of L is a

join of finitely many atoms.

(iv) If B is a finite Boolean algebra, then every element x in B is equal to the union of

atoms that are  x.

Ans: (Refer: Theorem 15.2.13.)

9. State and Prove Demorgon Laws.
Ans: (Refer: Theorem 15.2.5.)

15.7 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-203-
4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-9780367367237

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr Kedukodi Babushri Srinivas

.

LESSON 16

IDEALS, FILTERS AND SOLUTIONS OF
BOOLEAN EXPRESSIONS

OBJECTIVE:

 To define the substructure ideal in Boolean algebra
 To understand Maximal ideal, filters in Boolean algebra
 To Learn to find the solutions of Boolean equations.
 To have proper understanding of the substructures of Boolean algebras.
 To develop skills in solving problems.

STRUCTURE:

16.1 Introduction
16.2 Ideals
16.3 Filters
16.4 Solutions of Boolean Equations
16.5 Summary
16.6 Technical Terms
16.7 Self Assessment Questions
16.8 Suggested Readings

16.1. INTRODUCTION:

In this Lesson, we define the substructures ideals, and filters in Boolean algebras. In the later
sections we provide a procedure to find the solutions of Boolean equations.

16.2. IDEALS:

We define the substructure namely ideal and maximal ideal of a Boolean algebra.

16.2.1. Notation : Let B be a Boolean algebra and b, c  B. Then we write b + c
instead of b  c, and bc instead of b  c.

16.2.2. Definition: Let B be a Boolean algebra, and I  B. The subset I is said to be an
ideal in B (in symbols, we write I  B) if I is non-empty and if
 ib  I and i + j  I for all i, j  I and b  B.

16.2.3 Result: Let B be a Boolean algebra and I is an ideal in B. If we take b = i1, then
we get that 0 = i1  i = b  i  I. Thus 0  I for every ideal I of a Boolean
algebra B.

16.2.4 Example: (i) Let B be a Boolean algebra. The subsets
{0} and B of the set B are ideals of the Boolean algebra B. These two ideals are called
trivial ideals. All the other ideals of B, if exist, are called proper ideals of B.

-

Centre for Distance Education 16.2 Acharya Nagarjuna University

(ii) Let A be a non-empty set. Write B = , the power set of A. Then B

together with the operations  (where  is the set theoretic intersection),  (where  is the
set theoretic union) is a Boolean algebra.
Write I = {X / X is a finite subset of A}.
 It is clear that I is a non-empty subset of B.

Let X, Y  I , Z  B  X, Y are finite subsets of A.

  X  Y , X  Z are finite subsets of A

  X + Y, X.Z are finite subsets of A

  X + Y, X.Z  I.

This shows that I is an ideal of B.

16.2.5 Definition: Let B1, B2 be Boolean algebras and h : B1 B2 a Boolean
homomorphism. Then the set {b  B1  h(b) = 0} is called the kernal of h, and the set is
denoted by Ker h.

16.2.6 Note: Let h : B1 B2 be a Boolean homomorphism. Then Ker h is an ideal
 of B1.
 [Verification: Let x, y  Ker h, b  B  h(x) = 0 and h(y) = 0

 h(x  y) = h(x)  h(y) = 0  0 = 0 and h(x  b) = h(x)  h(b) = 0  h(b) = 0

 x  y , x  b  Ker h. This shows that Ker h is an ideal of B1].

16.2.7 Theorem: Let B be a Boolean algebra and I a non-empty subset of B.
Then the following conditions are equivalent:
 (i) I  B (That is, I is an ideal of B);

 (ii) If i, j  I and b  B such that b  i, then i + j  I and b  I.

 (iii) There exists a Boolean algebra B1 and a Boolean homomorphism h : B  B1 such

that I = Ker h.

Proof: (i)  (ii): Let i, j  I and b  B such that b  i.

Since I is an ideal of B, we have that i + j  I.

Since b  i, and I is an ideal, we have that b = b  i = bi  I.

(ii)  (iii): Let I satisfies the condition (ii). Now define a relation ~ on B by

 b1 ~ b2  b1 + b2  I.

Then ~ is an equivalence relation.

The equivalence class containing b  B is denoted by [b].

Consider the set B/~ of all equivalence classes.

We define the operations +, . and "." on B/~ as follows:

 [b1] + [b2] = [b1 + b2], and [b1] [b2] = [b1b2].

)A(

Advanced Discrete Mathematics 16.3 Ideals, Filters and Solutions…

Now we verify that these two operations on B/~ are well defined.

For this, suppose [b1] = [c1] and [b2] = [c2]. This implies

 b1 ~ c1 and b2 ~ c2  b1 + c1  I and b2 + c2  I

 b1 + b2 + c1 + c2  I.  b1 + b2 ~ c1 + c2  [b1 + b2] = [c1 + c2].

This shows that the operation + on B/~ is well defined.

Now [b1] = [c1] and [b2] = [c2]. This implies

 b1 ~ c1 and b2 ~ c2  b1 + c1  I and b2 + c2  I

 b1 + b2 + c1 + c2  I.

 b1b2 + c1c2  I (by (ii) and since b1b2 + c1c2  b1 + b2 + c1 + c2)

 [b1b2] = [c1c2].

This shows that the operation product on B/~ is well defined.
Now it is easy to verify that (B/~ + , .) is a Boolean algebra with zero [0] and unit [1].
Define a mapping h : B  B/~ , by h(b) = [b].

Let a, b1, b2  B. Now h(b1 + b2) = [b1 + b2] = [b1] + [b2] = h(b1) + h(b2), and

h(b1 . b2) = [b1 . b2] = [b1] . [b2] = h(b1) . h(b2).

We know that a + a1 = 1  [a] + [a1] = [1]  [a]1 = [a1]  (h(a))1 = h(a1).

This shows that h is a Boolean homomorphism.

Now we show that Ker h = I.

Let b  Ker h  h(b) = [0]  [b] = [0]  b - 0  I  b  I.

This shows that Ker h = I.

(iii)  (i): Proof follows from the Note 16.2.6.

16.2.8 Definition: Let B be a Boolean algebra and I an ideal of B.
Now define a relation ~ on B by b1 ~ b2  b1 + b2  I.
This is an equivalence relation.
The equivalence class containing b  B is denoted by [b].

Consider the set B/ ~ of all equivalence classes.

We define the operations +, . and "." on B/ ~ as follows:

 [b1] + [b2] = [b1 + b2], and [b1] [b2] = [b1b2].

In the proof of the Theorem 16.2.7, we verified that these two operations on B/ ~ are well

defined, and (B/~ + , .) is a Boolean algebra with zero [0] and unit [1].

This Boolean algebra (B/~, + , .) is called the Boolean factor algebra and it is denoted by
B/I.

Centre for Distance Education 16.4 Acharya Nagarjuna University

16.2.9 Example: (i) Let M be a set, and N  M.

We know that (N) and (M) are Boolean algebras.

Since N M, we have that (N) (M), and so (N) is an ideal of (M).

 (ii) For [p]  Pn / ~, we define ([p]) = { [p] [q] / q  Pn}.

Now ([p]) is an ideal of Pn/~.

16.2.10 Definition: Let B be a Boolean algebra.
 (i) Suppose b  B. The set { bc  c  B} is denoted by (b).
It is easy to verify that the set (b) is an ideal of B.
This ideal (b) is called a principal ideal.

 (ii) Let M be an ideal of B such that M  B. The ideal M is said to be a maximal

ideal of B if it satisfies the following condition:

 I is an ideal of B, and M I B  M = I or I = B.

16.2.11 Theorem: Let B be a Boolean algebra and b  B.
Then (b) = {a  B / a  b}.

Proof: We know that (b) = { bc / c  B }. Write X = {a  B / a  b}.

Now we have to show that (b) = X.

Let x  (b)  x = bc for some c  B  x = b  c  b  x  X.

Converse: Let y  X  y  b  y = b  y = by  (b).
This shows that (b) = X.

16.2.12 Theorem: Let M be an ideal of a Boolean algebra B, then the following two
conditions are equivalent:

 (i) M is a maximal ideal.

 (ii) b  B  b  M or b1  M, but not both.

Proof: (i)  (ii): Part-(i): In a contrary way, suppose that there exists b  B such that b

 M and b1 M. Write J = {x + m / m  M, b  B and x  b}.

Now M J and b  J \ M. So M is a proper subset of J.

Part-(ii): Now we verify that J is an ideal of B.

Let x1 + m1, x2 + m2 J and c  B with x1  b, x2  b, m1  M, m2  M.

Now x1  b, x2  b  x1 + x2 = x1  x2  b.

 

    

 

 



Advanced Discrete Mathematics 16.5 Ideals, Filters and Solutions…

Also m1, m2  M and M is an ideal  m1 + m2  M.

Therefore (x1 + m1) + (x2 + m2) = (x1 + x2) + (m1 + m2)  J.

Consider (x1 + m1)c = x1c + m1c  J

[because x1c = x1  c  x1  b and m1c  M (since M is an ideal)].

This shows that J is an ideal containing M {b}.

By the definition of J, we can conclude that J is the ideal generated by M {b}.

Also J contains M properly.

Part-(iii): Now M J B and M is a maximal filter  M = J or J = B

 J = B (Since M J).

Now b1  B = j

 b1 = x + m for some x  b and m  M(by the definition of J)

 b1(x + m) = b1b1  b1 x + b1m = b1

 0 + b1m = b1 (since b1  x  b1  b = 0)

 b1m = b1  b1 = b1m = mb1  M (since M is an ideal)

 b1  M, a contradiction.

Therefore either b  M or b1  M .

Part-(iv): Suppose b, b1  M

 b + b1  M  1 = b + b1  M

 1.c  M for all c  B (since M is an ideal)  c  M for all c  B

 B = M, a contradiction (to the fact that M is a proper filter).

(ii)  (i): We have to show that M is a maximal ideal.

Let I be an ideal of B such that M I B. Suppose that I B.

Now we have to show that M = I. In a contrary way, suppose that M I. Then

there exists x  I and x M

 x  I and x1  M (since x  M or x1  M)

 x, x1  I (since M I)  1 = x + x1  I

 I = B, a contradiction. Hence either M = I or I = B.

The proof is complete.





 



  







Centre for Distance Education 16.6 Acharya Nagarjuna University

16.3 FILTERS:

16.3.1 Definition: Let B be a Boolean algebra and . Then F is said to be a filter
(or dual ideal) if it satisfies the following two conditions:
 (i) x, y  F  xy  F., and (ii) a  F, b  B  a + b  F.

16.3.2 Examples: (i) Let B be a Boolean algebra. The two subsets {1} and B are filters.
These two filters are called trivial filters. The other filters, exist if any, are called as proper
filters.

 (ii) Let X be an infinite set. We know that is a Boolean algebra. Write

F = {A / A X, and X \ A is finite}. Now we show that F is a filter.

Let A, B  F; and C  B.A  F, and C  B

 X \ A is a finite set, and C  B.  X \ (A C) X \ A is a finite set

 A C  F  A + C  F.

Let A, B  F  X \ A and X \ B are finite

 X \ (A B) = (X \ A) (X \ B) is finite.  A B  F.

This shows that F is a filter.

 (iii) Let Y be a non-empty set, and B = .

We know that B is a Boolean algebra.

Let A Y. Write F = {C / A C Y}. Now we verify that F is a filter in B.

Let U, V  F and Z  B

 A U Y and A V Y

 A  (U + Z)  Y and A  (U V) Y  (U + Z), U.V  F.

This shows that F is a filter.

16.3.3. Theorem: Let B be a Boolean algebra and I ⊊ B.
The following two conditions are equivalent:

 (i) I is an ideal; and (ii) F = {x1 / x  I} is a filter.

Proof: (i)  (ii): Let a, b  F and c  B

 a1, b1  I and c1  B  a1 + b1  I and a1c1  I

 (a1 + b1)1  F and (a1c1)1  F  a11.b11  F and a11 + c11  F

 a.b  F and a + c  F. Therefore F is a filer.

(ii)  (i): Let x, y  I and c  B.

 x1, y1  F and c1  B  x1.y1  F and x1 + c1  F

BF

)X(



 



  

)Y(

  

   

 



Advanced Discrete Mathematics 16.7 Ideals, Filters and Solutions…

 (x1.y1)1  I and (x1 + c1)1  I  x11 + y11  I and x11 c11  I

 x + y  I and xc  I. Therefore I is an ideal.

16.3.4 Theorem: Let B be a Boolean algebra and F B. Then the following three
conditions are equivalent:

 (i) F is a filter in B.

 (ii) There is a Boolean algebra B1 and a Boolean homomorphism f : B  B1 such that F

= {b  B / f(b) = 1}

 (iii) a, b  F, x  B, and a  x  ab  F and x  F.

Proof: (i)  (ii): Let F be a filter in B. Then by the Theorem 16.3.3, the set

 I = {a1 / a  F} is an ideal of B.

Hence by the Theorem 16.2.7, there exists a Boolean algebra B1 and a Boolean

homomorphism f : B  B1 such that I = Ker f. Now let b  B.

Then b  F  b1  I = Ker f  f(b1) = 0  (f(b))1 = 0  f(b) = 1.

This shows that F = {b  B  f(b) = 1}

(ii)  (iii): Suppose there is a Boolean homomorphism f of B into another Boolean algebra

B1 such thatF = {b  B  f(b) = 1}. Let a, b  F.

Then f(a) = 1 = f(b)

 f(a  b) = f(a)  f(b) = 1  1 = 1  a  b  F.

Suppose a  F, x  B and a  x.

 f(a) = 1, x  B, x = a  x

 f(x) = f(a  x) = f(a)  f(x) = 1  f(x) = 1  x  F. Hence we have (iii).

(iii)  (i): Suppose the condition (iii). Let a, b  F and x  B

 ab  F (by (iii)), a + x  F, and a  a  x = a + x

 ab  F, and a + x  F (by (iii)). The poof is complete.

16.3.5 Note: Let B be a Boolean algebra.
(i) Let I be a proper ideal of B and write
ξ = {J  J is an ideal of B such that I J  B}.
By Zorn's Lemma, ξ contains a maximal element and this maximal element is a maximal
ideal.





Centre for Distance Education 16.8 Acharya Nagarjuna University

 (ii) Let F be a proper filter of B and write

Ω = { J  J is a filter of B such that F J  B}.

By Zorn's Lemma, Ω contains a maximal element M.

This M satisfies the following property:

K be a filer, M K B  M = K or K = B.

16.3.6 . Definition: Let F be a proper filter in a Boolean algebra B. We say that F is a
maximal filter (or ultra filter) if it satisfies the following condition:
K is a filter, F K B  F = K or K = B.

16.3.7. Theorem: Let M be a Filter of a Boolean algebra B, then the following two
conditions are equivalent:

 (i) M is a maximal (ultra) filter.

 (ii) b  B  b  M or b1  M, but not both.

Proof: (Similar to the proof of Theorem16.2.12.)

16.3.8. Problem: Let X be a set and write B = .

We know that B = is a Boolean algebra. Let x  X. Then

 (i) Fx = {A   x  A} is a filter in .

 (ii) Fx is an ultra filter.

Solution: (i) Let U, V  Fx, and C  B . x  U, x  V and C  B

 x  U V = U.V and x = x + 0  U + C

 U. V  Fx and U + C  Fx. This shows that Fx is a filter.

 (ii) Let J be a filter such that Fx J B.Suppose Fx J.

Then there exists Y  J such that Y Fx  x Y  J.

Now {x}  Fx J and x Y  J

   = {x}  Y  J (since J is a filter)

Let Z  B   Z    Z.

Now   J and   Z and J is a filter  Z  J (by the Theorem 16.3.4).

Now we proved that Z  B  Z  J. So B J. Hence J = B.

This shows that Fx is a maximal (ultra) filter.



 

 

)X(
)X(

)X()X(



 

 

 





Advanced Discrete Mathematics 16.9 Ideals, Filters and Solutions…

16.3.9. Definition: Let X be a set and write B = . We know that B is a Boolean

algebra. Let x  X. We know that Fx = {A  / x  A} is an ultra filer. These

filters Fx, x  X are called fixed ultra filters.

16.4 SOLUTIONS OF BOOLEAN EQUATIONS:

16.4.1 Definition: Let p and q be Boolean polynomial in Pn.

 (i) Then the pair (p, q) is called an equation.

 (ii) An element (a1, a2, …, an)  Bn is called a solution for the equation (p, q) if

(a1, a2, …, an) = (a1, a2, …, an).

 (iii) If (a1, a2, …, an) is a solution for the equations (pi, qi) for all i  I, then we say

that (a1, a2, …, an) is a common solution of all equations (pi, qi).

In this case, we also say that (a1, a2, …, an) is a solution of the system {(pi, qi)  i  I}.

16.4.2 Notation: (i) Sometimes we write p = q instead of (p, q).

 (ii) Suppose p = x1

1x2 + x3 and q = x1(x2 + x3).

If (x1, x2, x3) = (1, 0, 1), then p = 1 and q = 1.

Therefore (1, 0, 1) is a solution for (p, q).

In this case, we say that (1, 0, 1) is a solution of the equation p = q.

 (iii) Suppose p = x + x1 and q = 0. Then p = q have no solution.

16.4.3 Theorem: The equations p = q and pq1 + p1q = 0 have the same solutions for

any two Boolean polynomials p and q in Pn.

Proof: Let B be a Boolean algebra and (a1, a2, …, an)  Bn

.

Let p, q  Pn. Write a = (a1, a2, …, an) and b = (a1, a2, …, an).

Now (a1, a2, …, an) is a solution for p = q.

 (a1, a2, …, an) = (a1, a2, …, an)  a = b

 0 = a  a1

 = (a  a)  (a1 a1) = (a + a)(a1 + a1)

 = (a + b) (a1 + b1) (since a = b)

 = aa1 + ab1 + ba1 + bb1 = 0 + ab1 + ba1 + 0

)X(

)X(

Bp Bq

Bp Bq

Bp Bq

Centre for Distance Education 16.10 Acharya Nagarjuna University

 = ab1 + ba1 = ab1 + a1b

 = (a1, …, an) . (a1, …, an) + (a1, …, an) . (a1, …, an)

 = (+)(a1, …, an) = (a1, a2, …, an)

 0 (a1, …, an) = (a1, a2, …, an)

 (a1, a2, …, an) is a solution for the equation 0 = pq1 + p1q.

Thus we proved that (a1, a2, …, an)  Bn is a solution for p = q

 (a1, a2, …, an) is a solution for pq1 + p1q = 0. The proof is complete.

16.4.4 Theorem: Let B be a Boolean algebra and(a1, a2, …, an)  Bn.

Let pi, qi  Pn for 1  i  n.

Then the following two conditions are equivalent:

 (i) (a1, a2, …, an) is a solution for the system {(pi, qi) 1  i  m}

 (ii) (a1, a2, …, an) is a solution for the equation

p1q1
1 + p1

1q1 + p2q2
1 + p2

1q2 + … + pmqm
1 + pm

1qm = 0

Proof: Now (a1, a2, …, an) is a solution for the system{(pi, qi) / 1  i  m}

 (a1, a2, …, an) is a solution for pi = qi for all 1  i  m.

 (a1, a2, …, an) is a solution for pi
1qi + piqi

1 = 0 for all 1  i  m.

 (a1, a2, …, an) is a solution for (p1
1q1 + p1q1

1) + … + (pm
1qm + pmqm

1)

 = 0 + 0 +… + 0 = 0.

The proof is complete.

16.4.5 Note: How to find a common solution for a given system of equations:

Step-(i): Suppose the given system of equation is (pi, qi) 1  i  m}

Step-(ii): Write down the expression (p1

1q1 + p1q1
1) + … + (pm

1qm + pmqm
1)

Step-(iii): Express polynomial (in step-(ii)) in conjunctive normal form.
Suppose the conjunctive normal form is where ti is a

sum terms. (Note that each ti has the form with each ei = 0 or 1).

Step-(iv): Note that (a1, …, an) is a solution for

 it is a solution for at least one ti.
Find the solutions for each equation ti = 0.

Bp
1

Bq
1

Bp Bq

Bp
1

Bq
1

Bp Bq  B11 qppq 

 B11 qppq 

 it
n21 e

n
e

2
e

1 x...xx

 it

Advanced Discrete Mathematics 16.11 Ideals, Filters and Solutions…

Step-(v): All the solutions obtained in Step-(iv) form the set of all solutions of the given
system of equations.

16.4.6 Problem: Solve the system of equations (x1x2, x1x3 + x2), and (x1 + x2

1, x3)}

Solution: Step-(i): In our usual notation p1 = x1x2, q1 = x1x3 + x2,

p2 = x1 + x2
1, q2 = x3.

Step-(ii): Consider the expression [(x1x2)1(x1x3 + x2) + (x1x2)(x1x3 + x2)1]

 + [(x1 + x2
1)1 (x3) + (x1 + x2

1)(x3)1].

Step-(iii): The conjunctive normal form for this expression (the detailed steps left to the

reader as exercise) is (x1 + x2 + x3
1)(x1

1 + x2
1 + x3

1) = 0.

Step-(iv): Now t1 = (x1 + x2 + x3

1) and t2 = (x1
1 + x2

1 + x3
1).

Now (a1, a2, a3) is a solution for t1 = (x1 + x2 + x3
1) = 0

 a1 + a2 + a3
1 = 0  a1 = a2 = a3

1 = 0

 a1 = 0, a2 = 0, a3 = 1.

Thus (0, 0, 1) is a solution for t1 = 0.

Now (b1, b2, b3) is a solution for t2 = (x1
1 + x2

1 + x3
1)

 b1
1 + b2

1 + b3
1  b1

1 = b2
1 = b3

1 = 0

 b1 = b2 = b3 = 1. Thus (1, 1, 1) is a solution for t2.

Step-(v): Conclusion: {(0, 0, 1), (1, ,1 ,1)} is the set of all solutions of all solutions for the
given system of equations.

16.4.7 Theorem: Let E = {pj = 0  j  J} be a system of equations over a Boolean algebra

B with pj  Pn for all j  J.

Write I = {b1 + … + bm  bj  B for 1  j  n}

 (i) Then I is an ideal in Pn(B).

 (ii) (a1, …, an)  Bn is a common solution of {pj = 0 / j  J}

 (a1, …, an) = 0 for all i  I.

Proof: (i) Let x, y  I,  Pn(B).

 x = b1 + … + bm and y = c1 + … + ck .

1p mp

i

q

1p mp 1r kr

Centre for Distance Education 16.12 Acharya Nagarjuna University

 x + y = b1 + … + bm + c1 + … + ck  I.

Note that pj = 0  pj.q = pj  q = 0  q = 0  pj.q = 0.

Now x = (b1 + … + bm). = b1 + … + bm)  I.

This shows that I is an ideal.

(ii) Now (a1, …, an) is a common solution of {pj = 0 / j  J}

 pj (a1, …, an) = 0 for all j  J.

 bj pj (a1, …, an) = 0 for all j  J and bj B

 (b1p1 + … + bmpm)(a1, …, an) = 0 for all j  J and bj  B for all m.

 (a1, …, an) = 0 for all i  I. The proof is complete.

16.5 SUMMARY:

In this lesson, we have introduced ideals and filters which are important substructures of a
Boolean algebra. We have given a method to find a common solution for a given system of
equations.

16.6 TECHNICAL TERMS:

1. Ideal:
 A non-empty I of a Boolean algebra B is said to be an ideal of B and if ib  I and i + j 
I for all i, j  I and b  B.

2. Principal ideal:
 Let B be a Boolean algebra. Suppose b  B. The set { bc  c  B} is denoted by (b).
It is easy to verify that the set (b) is an ideal of B. This ideal (b) is called a principal
ideal.

3. Filter:
Let B be a Boolean algebra, and . Then F is said to be a filter (or dual ideal) of B

if (i) x, y F  xy  F, and (ii) a  F, b  B  a + b  F.

4. Kernal of a Boolean homomorphism:
Let B1, B2 be Boolean algebras and h : B1 B2 a Boolean homomorphism. Then the set
{b  B1  h(b) = 0} is called the kernal of h, and the set is denoted by Ker h.

5. maximal filter (or ultra filter):
 Let F be a proper filter in a Boolean algebra B. We say that F is a maximal filter (or
ultra filter) if it satisfies the following condition:
K is a filter, F K B  F = K or K = B.

1p mp 1r kr

q 1p mp q qp1 qpm

i

BF

 

Advanced Discrete Mathematics 16.13 Ideals, Filters and Solutions…

16.7 SELF ASSESSMENT QUESTIONS:

1. If B is a Boolean algebra and I a non-empty subset of B, then prove that the following
conditions are equivalent:
 (i) I  B (That is, I is an ideal of B);
 (ii) If i, j  I and b  B such that b  i, then i + j  I and b  I.
 (iii) There exists a Boolean algebra B1 and a Boolean homomorphism h : B  B1 such
that I = Ker h.
Ans: (Theorem: 16.2.7).

2. If B is a Boolean algebra and I ⊊ B, then prove that the following two conditions

are equivalent: (i) I is an ideal; and (ii) F = {x1 / x  I} is a filter.
Ans: (Theorem 16.3.3.)

3. Define ideal and filter in a Boolean algebra and give examples each.
Ans: (Refer: Definition 16.2.2., Example 16.2.4.(ii), Definition 16.3.1., Example 16.3.2.)

4. Prove that the equations p = q and pq1 + p1q = 0 have the same solutions for any two
Boolean polynomials p and q in Pn.
Ans: (Theorem 16.4.3.)

5. Solve the system of equations (x1x2, x1x3 + x2), and (x1 + x2

1, x3)}
Ans: (Refer the solution of Problem 16.4.6.)

16.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr Kedukodi Babushri Srinivas



.

LESSON 17

MINIMUM FORMS OF BOOLEAN
POLYNOMIALS, KARNAUGH DIAGRAMS

OBJECTIVES:

 To know more on Boolean polynomials.
 To find minimal forms of Boolean polynomials.
 To understand the Quine-McCluskey algorithm to find minimal forms
 To apply Quine-McCluskey algorithm.
 To understand the Karnaugh-diagrams.
 To get ability to represent Boolean polynomials in terms of K-diagrams

STRUCTURE:

17.1 Introduction
17.2 Minimal forms of Boolean polynomials
17.3 Quine-McCluskey algorithm.
17.4 Karnaugh diagrams
17.5 Minimization of Boolean Expressions using K-maps
17.6 Summary
17.7 Technical Terms
17.8 Self Assessment Questions
17.9 Suggested Readings

17.1. INTRODUCTION:

We know that by using the axioms of a Boolean algebra, we can simplify a given
Boolean polynomial. The process of simplification is called the optimization or minimization
of Boolean polynomials. This optimization is useful in future studies such as the
simplification of switching circuits (we study this concept of switching circuit in the next
coming lessons).

Boolean algebra is used as a tool for expressing problems of circuit design. In the
previous lessons, we have seen some of them viz., Hasse diagrams, truth tables and logical
diagrams. In this lesson, another widely-used way is discussed. This type of representation
helps us to simplify the functions. We discussed a new structure, called Karnaugh diagram /
map. This is an area which is subdivided into 2n cells, one for each possible input
combination for a Boolean function of n variables. Half the number of cells is associated with
an input value of 1 for one of the variables and the other half the number of cells, with the
input value 0 for the same variable. More precisely, the Karnaugh map corresponding to
Boolean expressions in n variables is an area which is subdivided into 2n cells (small squares)
each of which corresponds to one of the fundamental products (or minterms) in n variables.

-

Centre for Distance Education 17.2 Acharya Nagarjuna University

17.2 MINIMAL FORMS OF BOOLEAN POLYNOMIALS:

17.2.1 Notation: (i) Any Boolean variable x (either complemented or not), 0 and 1 are
called as literals.

 (ii) The symbol df denotes the total number of literals in a sum-of-products representation
of a Boolean polynomial f.

 (iii) The symbol ef denotes the number of summands in f.

 (iv) We say that f is simpler than a sum-of-product expression g if ef < eg ,

or ef = eg and df < dg.

(v) We say that f is minimal if there is no simpler sum-of-product expression which is
equivalent to f.
(In other words, f is minimal if it has sum-of-product expression with the smallest possible
number of literals).

 (vi) In this section, a Boolean polynomial is also called as expression.

17.2.2 Definition: We say that an expression p implies an expression q if the condition:

ℬ(b1, …bn) = 1  ℬ(b1, …bn) = 1 is true for all b1, …bn ℬ.

 In this case, we say that p is an implicant of q.

17.2.3 Note: (i) A product expression (or a product) is an expression in which + does not
occur.

 (ii) A prime implicant for an expression p is a product expression which implies
p, but which does not imply p if one or more factors in are deleted.

 (iii) If the set of factors of a product term p is a subset of the set of factors of a product
term q, then we say that p is a subproduct of q.

17.2.4 Examples: (i) x1x3 is a subproduct of x1x2x3.

(ii) x1x3 is a subproduct of x1x2
1x3.

(iii) Consider the expression p = x1x2x3 + x1x2
1x3 + .

Observe that (1, i2, 1) = 1, and (1, i2, 1) = 1.

For other arguments, the value of is 0. The subproducts of x1x3 are x1, and x3.

Neither x1 nor x3 imply p (since (1, 1, 0) = 1, and (1, 1, 0) = 0).

So x1x3 is an implicant of p , and no subproduct of x1x3 is an implicant of p.

Therefore x1x3 is a prime implicant of p.

p q




1
3

1
2

1
1 xxx

31xx p

31xx

1
1x p

Advanced Discrete Mathematics 17.3 Minimum forms of Boolean…

17.2.5 Theorem: A polynomial p  Pn is equivalent to the sum of all its prime
implicants.

Proof: Let { pa / a  A} be the set of all prime implicants of p, and q be sum of all

prime implicants pa of p.

Part-(i): Suppose (b1, …bn) = 1 for some (b1, …bn) ℬn.

If pa(b1, …bn) = 0 for all prime implicants pa, then the sum (b1, …bn) = 0, a

contradiction. Therefore pa(b1, …bn) = 1 for some prime implicant pa.

Since pa is a prime implicant, pa implies p, and so (b1, …bn) = 1.

Now we proved that (b1, …bn) = 1  (b1, …bn) = 1.

Part-(ii): Suppose that (b1, …bn) = 1.

We know that p can be expressed in disjunctive normal form.

Suppose that p = s1 + s2 + … is the disjunctive normal form where each si is a product

term.

Since (b1, …bn) = 1, there exists i such that si(b1, …bn) = 1.

If si is a prime implicant, then (since si(b1, …bn) = 1) the the sum of prime implicants equal

to 1, and so (b1, …bn) = 1.

Now si is a product term of the form … .

If si is not a prime implicant, then there exists a subterm t of si which implies p, and

t(b1, …bn) = 1.

Note that we got t by removing some terms in si = … .

If t is a prime implicant, then (b1, …bn) = 1.

If t is not a prime implicant, then (after some steps), we get a subproduct term r of si

such that r implies p, and there is no subproduct term of r that implies p.

Then r is an implicant of p, and r(b1, …bn) = 1.

Since r is a prime implicant, and r(b1, …bn) = 1, we have that the sum of prime implicants

is equal to 1. That is, (b1, …bn) = 1.

Now we proved that (b1, …bn) = 1  (b1, …bn) = 1.

Part-(iii): From Part-(i) and Part-(ii), we conclude that

(b1, …bn) = 1  (b1, …bn) = 1.

q

q

p

q p

p

p

q

1b
1x nb

nx

1b
1x nb

nx

q

q

q p

q p

Centre for Distance Education 17.4 Acharya Nagarjuna University

Now we have that (b1, …bn) = 0  (b1, …bn) = 0.

This shows that p is the sum of its prime implicants.

17.2.6 Definition: A sum of prime implicants of p is said to be irredudant if it is equivalent
to p, but does not remain equivalent if any one of its summands is omitted.

17.2.7 Note: (i) A minimal sum-of-product expression is irredundant.

 (ii) To get a minimal expression for a given polynomial p, first we get the set of
irredundant expressions for p, and then we select that irredundant expression with the least
number of literals.

 (iii) Prime implicants are obtained by starting with the disjunctive normal form d for

the Boolean polynomial p and then by applying the rule yz + yz1 ~ y, (from left to

right) wherever necessary.

In particular, we use ~ , where , , and are some product

expressions.

The set all sub expressions of the d.n.f. of p which cannot be simplified further by this
procedure, is the set .of prime implicants.
The sum of these prime implicants obtained is equivalent to p (we may say that the sum of
these prime implicants is equal to p).

17.2.8 Example: Let p be the Boolean polynomial.
We use , x, y, z instead of x1, x2, x3, x4.

Step-(i): Suppose the disjunctive normal form d for p is given by

d = xyz1 + xy1z1 + x1yz + x1yz1 + 1x1yz + 1x1yz1 + 1x1y1z.

Step-(ii): Observe the following:

xyz1 + xy1z1 = xz1,

x1yz +x1yz1 = x1y ,

xyz1 + x1yz1 = yz1 ,

1x1yz +1x1yz1 = 1x1y ,

1x1yz+ 1x1y1z = 1x1z ,

x1yz + 1x1yz = x1yz ,

x1yz1 + 1x1yz1 = x1yz1 .

Now we use the above mentioned equations in the process of minimizing the polynomial
expression. In general, this procedure is repeated again and again.
Whenever a product term is used (in this process), we place a tick mark.
At any step, the product terms that cannot be ticked, are prime implicants.

q p

 1    



     

Advanced Discrete Mathematics 17.5 Minimum forms of Boolean…

Step-(iii): In this example, the second round of simplifications yields:

x1y +1x1y = x1y ,

 x1yz + x1yz1 = x1y .

These four expressions x1y, 1x1y, x1yz, and x1yz1 are ticked.

Finally we get that

p ~ xz1 + yz1 + x1z + x1y, which is a sum of prime implicants of p.

McCluskey improved this method, and the improved method is called as
Quine-McCluskey algorithm.

17.3 QUINE-MCCLUSKEY ALGORITHM:

17.3.1 Algorithm:

Step-1: Consider the d.n.f. of the given Boolean polynomial.
We represent all the product terms of the d.n.f. in terms of zero-one-sequences (In other
words, the product terms are represented by binary n-tuples).
In particular, x1

1 and x1 are denoted by 0 and 1, respectively.

(For example, the product term 1x1y1z is denoted by 0001).

Missing variables are indicated by a dash.

(For example, the product term 1x1z is denoted by 00-1).

Step-2: The product expressions, regarded as binary n-tuples, are partitioned into classes
according to the numbers of ones in the expression. So we write the n-tuples according to
increasing numbers of ones. In our example, the order is given below:

Step-3: If two of these expressions differ in exactly one position, then they are of the form p

= i1i2 …ir … in and q = i1i2 … … , where all ik are from {0, 1, -} and the ir

is in {0,1}.

Now instead of p + q we write i1i2 …ir-1 - ir+1 … in .

Also we place a tick mark at both p and q.
Now we consider our example. From the Table-1, we get the Table-2.
In getting table-2, we use all the terms in table-1.

r
1i ni

 1x1y1z 0 0 0 1
 1x1yz1 0 0 1 0

 1x1yz 0 0 1 1
x1yz1 1 0 1 0
xy1z1 1 1 0 0

x1yz 1 0 1 1
xyz1 1 1 1 0

Table-1

Centre for Distance Education 17.6 Acharya Nagarjuna University

So all the terms of table-1 are to get a tick mark, and so no one of these product terms is a
prime implicant.

Step-4: The unticked terms in table-2, are prime implicants.

At present, from table-2, the prime implicants that are obtatined are 00-1 (1x1z), 1-10 (

yz1), and 11-0 (xz1). The expressions with ticks are not prime implicants and so we have

to go for further reduction.

The further reduction gives us only one term -01- (x1y).
Thus we got all the prime implicants, namely

Note that the sum of all prime implicants of a given polynomial may not be in the minimal
form.

Step-5: We know that the sum of all prime implicants of p is equivalent to p.
Observe the Table-4. This table-4 is called as prime implicants table.
The binary n-tuples related to the product terms of the d.n.f. are used for column headings.
The prime implicants are used for row headdings.
A product term u is said to cover another product term v if u is a subproduct of v.
A cross mark (that is,) is placed at the junction of the ith row and jth column if the
prime implicant in the ith row covers the product term of the jth column.
Now we select a minimal subset S of the set of prime implicants so that each product term
of the d.n.f. is covered by at least one of the prime implicant in S.
A prime implicant is called a main term(or essential) if it covers a product expression (of the
d.n.f.) which is not covered by any other prime implicant.
The sum of the main terms is called the core.
[Consider the example and observe table-4.

00-1 covers 0001, and the product term 0001 is not covered by any of the prime implicant.
So the prime implicant 00-1 is main term (or essential).



0 0 - 1  1x1z
1 - 1 0 yz1

1 1 - 0 xz1
- 0 1 - x1y

0 0 - 1
0 0 1 -
- 0 1 0

- 0 1 1
1 0 1 -
1 - 1 0
1 1 - 0








 Table - 2

Table-3

 0001 0010 0011 1010 1100 1011 1110

00 - 1  

1 - 10  

11 - 0  

- 01 -    

Table-4: Prime implicants table

Advanced Discrete Mathematics 17.7 Minimum forms of Boolean…

Note that 00-1, 11-0, -01- are main terms.

So the core = (00-1) + (11-0) + (-01-)

 = 1x1z + xz1 + x1y.]

Step-6: If the set of all prime implicants in the core cover all the product terms in the d.n.f.,
then the core is the (unique) minimal form of d.
If the set of all prime implicants in the core do not cover all the product terms in the d.n.f.,
then we go further.
[Consider our example. From the above step-5, we know that the

 core = 1x1z + xz1 + x1y.

In this example, the set of all prime implicants in the core cover all the product terms in the

d.n.f. Hence the minimal expression is 1x1z + xz1 + x1y.]

Step-7: Suppose the product terms of d.n.f. which are not covered by the prime implicants
of the core are q1, …, qk, and the prime implicants not in the core are p1, …, pm. We form
the next table (similar to prime implicants table) with qj as the column headings, and pi as
row headings.
The mark is placed in the entry (i, j) (that is, at the junction of the ith row and jth
column) to indicate the fact that pi covers qj . We then find a minimal sub-collection of
p1 , …, pm which covers all of q1, …, qk and add them to the core.

17.3.2 Problem: Determine the minimal form of p, which is given in its disjunctive normal
form

p = v1w1x1y1z1 + v1w1x1yz1 + v1w1xy1z1 + v1w1xyz1

 + v1wx1y1z + v1wx1yz1 + v1wxy1z + v1wxyz1

 + v1wxyz + vw1x1y1z1 + vw1x1y1z + vw1xy1z

 + vwx1yz1 + vwxy1z1 + vwxyz1 + vwxyz

Solution: We follow the Quine-McClusky algorithm. We are not going for detailed steps, as
the steps in detailed presented in the algorithm. We can write p in the binary form, as
follows:

p = 00000 + 00010 + 00100 + 00110

 + 01001 + 01010 + 01101 + 01110

 + 01111 + 10000 + 10001 + 10101

 + 11010 + 11100 + 11110 + 11111.

First we write these binary 5-tuples in the order and then we form the Table-1.
We got the Table-2 from Table-1. All the product terms in Table-1 are ticked.
So we do not get a prime implicant from Table-1. Now observe Table-2.
We got Table-3 from Table-2. All the product terms in Table-2 are not ticked.



Centre for Distance Education 17.8 Acharya Nagarjuna University

The terms which are not ticked are denoted by J, I, H, G, F, E.
For example, J represents the prime implicant "-0000".

 Row numbers

0 ones 0 0 0 0 0  (1)

1 one

0 0 0 1 0  (2)
0 0 1 0 0  (3)
1 0 0 0 0  (4)

2 ones

0 0 1 1 0  (5)

0 1 0 0 1  (6)

0 1 0 1 0  (7)

1 0 0 0 1  (8)

3 ones

0 1 1 0 1  (9)

0 1 1 1 0  (10)
1 0 1 0 1  (11)

1 1 0 1 0  (12)

1 1 1 0 0  (13)

4 ones

0 1 1 1 1  (14)

1 1 1 1 0  (15)

5 ones 1 1 1 1 1  (16)

Observe the Table-3.
No two terms in table-3 can be used to get a term to the next table. So each term of table-3 is
a prime implicant. The prime implicants obtained from table-3 are denoted by D, C, B, A.
Final list of prime implicantsis A, B, C, D, E, F, G, H, I, J.

(1)(2)

 0 0 0 - 0 

(1)(3) 0 0 - 0 0 

(1)(4) - 0 0 0 0 J

(2)(5) 0 0 - 1 0 

(2)(7) 0 - 0 1 0 

(3)(5) 0 0 1 - 0 

(4)(8) 1 0 0 0 - I

(5)(10) 0 - 1 1 0 

(6)(9) 0 1 - 0 1 H

(7)(10) 0 1 - 1 0 

(7)(12) - 1 0 1 0 

(8)(11) 1 0 - 0 1 G

Table-1

Table - 2

Advanced Discrete Mathematics 17.9 Minimum forms of Boolean…

(9)(14) 0 1 1 - 1 F

(10)(14) 0 1 1 1 - 

(10)(15) - 1 1 1 0 

(12)(15) 1 1 - 1 0 

(13)(15) 1 1 1 - 0 E

(14)(16) - 1 1 1 1 

(15)(16) 1 1 1 1 - 

(1)(2), (3)(5) 0 0 - - 0 D

(2)(5), (7)(10) 0 - - 1 0 C

(7)(10), (12)(15) - 1 - 1 0 B

(10)(15), (14)(16) - 1 1 1 - A

Step-4: In the prime implicants table (that is, in Table-4), for convenience, we give the
product terms of d.n.f. in + binary 5-tuples in column form.

 (1
)

(2) (3) (4) (5) (6) (7) (8) (9)

0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1
0 0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 1

- 1 1 1 - A
- 1 - 1 0 B 
0 - - 1 0 C   
0 0 - - 0 D    
1 1 1 – 0 E

0 1 1 – 1 F 
1 0 - 0 1 G 

0 1 - 0 1 H  
1 0 0 0 - I  
- 0 0 0 0 J  

(10) (11) (12) (13) (14) (15) (16)
0 1 1 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 0 1 0 1 1 1

Table - 3

Table - 4

Centre for Distance Education 17.10 Acharya Nagarjuna University

0 1 0 0 1 0 1
   
  


  

 
 

Observe the prime implicants table. The product terms D, H, G, B, E, and A are the main
terms. So we have that
Core = the sum of the main terms = D + H + G + B + E + A
The product term of column (4) is the only product term that is not covered by the main terms
in the core. This term 10000 is denoted by q1.
The prime implicants C, F, I, and J are not in the core. Now we form Table-5.

 (4)

0 - - 1 0 C

0 1 1 - 1 F

1 0 0 0 - I 

- 0 0 0 0 J 

This means that the minimal form is

 (i) D + H + G + B + E + A + J (if we use I);
 (ii) D + H + G + B + E + A + J (if we use J).

Note that the minimal form is not unique.
In our usual notation, the minimal form of p (given in (i)) is given by

P = v1w1z1 + v1wy1z + vw1y1z + wyz1 + vwxz1 + wxy + vw1x1y1.

17.4. KARNAUGH DIAGRAMS:

Now we study a method of representing a given Boolean polynomials (in n variables) in the
form of a diagram called as Karnaugh diagrams (that contains 2n cells where n is the number
of variables).

17.4.1 Example: Consider the Boolean polynomial p = x1x2. The following (Table-1) is
the truth table for p. As there are only two variable x1 and x2 there exists four possibilities
for x1x2 : 00, 01, 10, 11. Observe the following table-1.

Table - 5

Advanced Discrete Mathematics 17.11 Minimum forms of Boolean…

Row b1 b2 Minterm
2121 bb)b,b(p 

(1) 1 1 x1x2 1
(2) 1 0 x1x1

2 0
(3) 0 1 x1

1x2 0
(4) 0 0 x1

1x1
2 0

In the fourth column, there is only one 1 and this 1 is related to (b1 , b2) = (1, 1).
This 1 is related to the unique minterm x1x2. The other values of p are equal to 0.
For two input variables b1 , b2, the Karnaugh diagram (table-2) has b1 and b1

1 as column
headings and b2 and b1

2 as row headings.

b1 b1
1

 (1) (3)

(2) (4)

Each box at the junction of a row and a column represents a minterm. A shaded box
represents the value 1, and an unshaded box represents the value 0.

For the given function p = x1x2, (refer table-3) the shaded box represents the value 1. The
other boxes which do not have shade represents the value 0.

 b1 b1
1

b2

b2
1

17.4.2 Example: Karnaugh diagram for three input variables b1 , b2 , b3 will be in form
given in table-4.

 b1 b1
1

 b3
1

b2
 b3

b2
1 b3

1

17.4.3 Example: Karnaugh diagram for four input variables is of the form (called the
standard square (SQ)) given in table-5.

b3

b4

b4
1

b1
1

b2

b3
1

b4
1

b2
1

b3
1

b1

b2

b2
1

Table - 2

Table - 3

Table - 1

Table - 4

Table - 5

Centre for Distance Education 17.12 Acharya Nagarjuna University

17.4.4 Example: Now we present the Karnaugh diagrams of some polynomials in two
variables: x1 and x2 :

17.4.5 Example: The standard square (that is, the Karnaugh diagram for four variables)
enables us to construct Karnaugh diagrams for five or more input variables. This was
illustrated by the following tables.

 (i) We follow the diagram in Table-7 to represent a Boolean polynomial with five
variables.

(ii) We follow the diagram in Table-8 to represent a
Boolean polynomial with six variables.

17.4.6 Note: We use the Karnaugh diagrams to simplify the Boolean polynomials.
Consider the collection of the box portions with shade. We try to collect as many shaded box
portions of the diagram as possible to form a bigger block. This big box represents a
"simple" polynomial. (We may use a part of the diagram more than once, because the
polynomials corresponding to blocks are connected by +).

17.4.7 Problem : Simplify the polynomial p = (x1 + x2)(x1 + x3) + x1x2x3 by using its
Karnaugh diagram.

Solution: The given polynomial is p = (x1 + x2)(x1 + x3) + x1x2x3 .
The Karnaugh diagram for this polynomial is given in table-9.

b5 b1

5

SQ SQ

x1
1 + x2

1 :

x1x2 + x1
1x2

1 :

x1
1x2

1 :

x1
1x2 + x1x2

1 :

Table - 6

Table - 7

 b5 b5
1

b6 SQ SQ

b6
1
 SQ SQ

Table - 8

Advanced Discrete Mathematics 17.13 Minimum forms of Boolean…

Observe table-9. Here the boxes 1,3,4,5,7 are the shaded boxes.
These shaded boxes represent 1 (the value of the function).

 b1 b1
1

 1 2 b3
1

b2 3 4
 5 6 b3

b2
1 7 8 b3

1

The shaded boxes (1), (3), (5), (7) forms a big shaded rectangular region.
It is clear that this rectangular region represents the variable x1. Therefore this x1 is a
prime implicant. Now consider the shaded rectangular region formed by the shaded boxes
(3), (4) . This shaded rectangular region represents the term x2x3 . This is also a prime
implicants. We can understand from table-9 there are only two prime implicants for the
given polynomials. We know that every polynomial is equal (in other words, equivalent) to
sum of its prime implicants. Thus we conclude that p ~ x1 + x2x3 .

17.5. MINIMIZATION OF BOOLEAN EXPRESSIONS USING K-Maps:

The process of minimization of circuits is important in circuit design. The aim of
minimization is to reduce the number of gates to a minimum. Minimization of an expression
is the selection of the simplest representative expression of an equivalence class to serve as
our circuit. K-maps are used in the minimization process for functions of six or fewer
variables.

Two minterms or fundamental products (cells in a K-map) are said to be adjacent if they have
the same variables and if they differ in exactly one literal which must be a complemented
variable in one product and uncomplemented in the other.
For example,

1. xyz1 and xy1z1 are adjacent (here, note that in the terms xyz1 and xy1z1 , the
difference is: one term contains y and other term contains y1, the difference is in only one
variable, the other parts are same).

2. x1yzw and x1yz1w are adjacent (here, note that in the terms x1yzw and x1yz1w , the
difference is: one term contains z and other term contains z1, the difference is in only one
variable, the other parts are same).

3. x1yzw and xyz1w are not adjacent as they differ in two literals (here, note that in the
terms x1yzw and xyz1w , the difference is in two variables. The difference is: one term
contains x1, z and other term contains x, z1. Hence the given terms are not adjacent).

17.5.1 Theorem: Sum of two adjacent products P1 and P2 is a fundamental product with one
less literal.
Proof: Two adjacent products P1 and P2 are represented as

P1 = a1a2 … ar-1arar+1 … ak

Table - 9

Centre for Distance Education 17.14 Acharya Nagarjuna University

 and P2 = a1a2 … ar-1
1
ra ar+1 … ak

Then P1 P2 = a1a2 … an-1arar+1 … ak(1
r ra a) = a1a2 … ar-1ar+1 … ak

17.5.2 Example: For three variables, xyz1  xy1z1 = xz1 (y  y1) = zz1.

The above result and the absorption operation xyz + xyz1 = xy help us in grouping the
terms. Minimization involves grouping of adjacent cells with l’s in them into a largest
possible block of such cells. Simplified expression must contain minimum number of such
blocks.

17.5.3 Note: In case of two variables, a block will be either a pair of adjacent squares or an
individual square.

17.5.4 Example: Minimize the expression f = xy  xy1  x1y1
Solution: The K-map for the given expression is shown in the following Figure.

Therefore, f contains two blocks corresponding to x and other to y1.
Hence f = x  y1.

17.5.5 Note: In the case of 3 variables, a basic rectangle contains either a square, or two
adjacent squares, or four squares which form a one-by-four or a two-by- two rectangle.
A maximal basic rectangle is a block.

17.5.6 Example: Minimize the following expressions:

(a) f1 = xyz  xyz1  x1yz1  x1y1z

(b) f2 = xyz  xyz1  xy1z  x1yz  x1y1z

Solution K-maps for the given expressions are given in Figures.

Their minimized expressions are

(a). x1y1z  yz1 xy, (b). z  xy.

Advanced Discrete Mathematics 17.15 Minimum forms of Boolean…

17.6 SUMMARY:

In this lesson, we have learnt simplification (or minimization) of Boolean expressions. This
optimization is useful in the simplification of switching circuits which will be studied in the
next coming lessons. More importantly, we have discussed Quine-McCluskey Algorithm for
minimization of Boolean expressions.

In the later parts of this lesson, we discussed the process of reducing the number of terms in
a Boolean expression Karnaugh diagram / map. The method described was introduced by
Maurice Karnaugh in 1953. This method is usually applied only when the function involve
six variables or less. It has enormous applications in electronics and communications
engineering and information technology.

 17.7 TECHNICAL TERMS:

1. Implicant

We say that an expression p implies an expression q if the condition: ℬ(b1, …bn) = 1

 ℬ(b1, …bn) = 1 is true for all b1, …bn ℬ. In this case, we say that p is an
implicant of q.

2. Prime implicant
A prime implicant for an expression p is a product expression which implies p, but
which does not imply p if one or more factors in are deleted.

3. Quine-McCluskey Algorithm (Algorithm 17.3.1.)

4. Standard square (SQ)) in terms of Karnaugh diagram for four input variables.
Karnaugh diagram for four input variables is given in Table-5 here (it is called as the
standard square (SQ)).

5. Karnaugh map:
Corresponding to Boolean expressions in n variables, we use a square to represent the
Boolean expression. The area of the square is subdivided into 2n cells (small squares) each of
which corresponds to one of the fundamental products or minterms in n variables. Such
diagrams used are called as Karnaugh diagrams / maps.

6. Adjacent:
Two minterms or fundamental products (cells in a K-map) are said to be adjacent if they have
the same variables and if they differ in exactly one literal which must be a complemented
variable in one product and uncomplemented in the other.

p

q




b3

b4

b4
1

b1
1

b2

b3
1

b4
1

b2
1

b3
1

b1

Table - 5

Centre for Distance Education 17.16 Acharya Nagarjuna University

17.8 SELF ASSESSMENT QUESTIONS:

1. Prove that a polynomial p  Pn is equivalent to the sum of all its prime implicants.
Ans: (Theorem 17.2.5.)

2. Determine the minimal form of p, which is given in its disjunctive normal form
p = v1w1x1y1z1 + v1w1x1yz1 + v1w1xy1z1 + v1w1xyz1
 + v1wx1y1z + v1wx1yz1 + v1wxy1z + v1wxyz1
 + v1wxyz + vw1x1y1z1 + vw1x1y1z + vw1xy1z
 + vwx1yz1 + vwxy1z1 + vwxyz1 + vwxyz
Ans: (Problem 17.3.2.)

3. Find all prime implicants of xy1z + x1yz1+xyz1+xyz and form the corresponding prime
implicants table.
Ans: (Use the procedure given in 17.3.1.(refer steps 1 to 4)).

4. Simplify the polynomial p = (x1 + x2)(x1 + x3) + x1x2x3 by using its Karnaugh diagram.
Ans: (refer: Problem : 17.4.7.).

5. What do you mean by Karnaugh diagram/map. Give an example.
Ans: (Refer: matter before Example 17.4.1, and this example also).

6. Find the K-map for the following expressions:
(a) (x * y)  (x1 * y1)
(b) (x1 * y1 * z  x1 * y * z1 x * y * z1)
(c) (x1 * y1 * z * w)  (x1 * y * z * w1)  (x * y1 * z * w)  (x * y * z * w1)

Ans: K- maps for the above expressions are in the following figures.

7. For the Boolean expression represented by the following truth table, give K-map
representation. Also write the expression.

x y z f(x, y, z)

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Advanced Discrete Mathematics 17.17 Minimum forms of Boolean…

Ans: The Boolean expression represented by the given table is x1y1z1  x1y1z  xy1z1 
xyz1. The following figure represents the K-map for the expression
 x1y1z1  x1y1z  xy1z1  xyz1.

8. Minimize the expression: w1  y * (x1  z1) and provide K-map.
Ans: Minimized expression is : w1  yz1  wx1y .

The K-map is shown in the Figure.

17.9 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Harikrishnan Panackal

LESSON 18

SWITCHING CIRCUITS AND GATING
NETWORKS

OBJECTIVE:

 To know Switching circuits.
 To use the concepts of Boolean expressions.
 To understand the Gating networks.
 To identify different types of Gates.
 To have proper understanding of Swiching circuits and Gating networks.
 To develop skills in finding Gating networks for the given expressions.

STRUCTURE:

 18.1 Introduction
 18.2 Preliminary notations
18.3. Switching circuits
18.4 Gating Networks.
18.5 Summary
18.6 Technical Terms
18.7 Self Assessment Questions
18.8 Suggested Readings

18.1. INTRODUCTION:

The most important application of Boolean algebra lies in the realm of electrical engineering.
The devices such as mechanical switches, diodes, magnetic dipoles, and transistors are two
state devices. The two states may be realized as current or no current, magnetized or not
magnetized, high potential or low potential, and closed or open. Boolean algebra can be
applied to any two state device. In this lesson, we study the switching circuits and gating
networks.

18.2 PRELIMINARY NOTATIONS:

18.2.1 Note: Observe the Figures-1, 2, and 3.

(i) In these figures, the symbols x and y are electromagnets. These x and y

determine whether the corresponding switch is open or closed.

T1 T2

x  y

x y

Figure-1

-

Centre for Distance Education 18.2 Acharya Nagarjuna University

 (ii) In the figures-1 and 2, the switches are normally held open by a spring.

When the current flows through the electromagnet, the switch is pulled closed.

 (iii) In figure-3, the switch is normally closed by a spring and when current flows through

the electromagnet x, the switch is forced open.

 (iv) The flow of current through the main circuits (that is, the circuit connecting T1 and

T2) depends on whether the electromagnets x and y are “on” or “off”.

 (v) "On" is denoted by “1” and "off" by “0”.

Current flow through the main circuit is denoted by 1 while no current is denote by 0.

 (vi) Now the dependency was shows in the table-1.

18.2.2 Note: (i) If two terminal switching circuits f1 and f2 depend on the switches x1,

x2, …, xn, then f1 f2 will denote the switching circuit determined by f1 and f2 in

parallel (see the Figure-4).

T1 T2

x

y

x  y

Figure-2

T1 T2

x

Figure-3

Table-1

x y x  y x  y x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

 Advanced Discrete Mathematics 18.3 Switching circuits…

 (ii) f1 f2 will denote the switching circuit

determined by f1 and f2 in series (see the Figure-5).

 (iii) 1f the inverse (or the complement) of f1 will denote the switching circuit (as in the

Figure-3) that takes the value 1 when f1 takes value 0; and takes the value 0 when f1

takes the value 1.

18.2.3 Problem: Draw switching circuits which represent the following Boolean

expressions: (i) x1 (x2 x3), and (ii) (x1 x2)  (x1 x3).

Solution: (i) Figure-6 represents the Boolean expression x1 (x2 x3).

(ii) Figure-7 represents the Boolean expression (x1 x2)  (x1 x3).

T2 T1

f1 f2 f1

f2

Figure-4

f1 f2
T2 T1

f1 f2

Figure-5

T2 T1
x2

x1

x3

Figure-6

T2

T1

x2

x1

x3

Figure-7

Centre for Distance Education 18.4 Acharya Nagarjuna University

18.3. SWITCHING CIRCUITS:

The main object of the algebra of switching circuits is to describe electrical or electronic

switching circuits.

18.3.1 Note: (i) We also use the symbols given in Figure-8, for the switches.

 (ii) The symbol is for the complement of the switch

In other words, S1 and S1
1 constitute two switches which are linked, in two separate

places in a circuit so that S1 is open  S1
1 is closed.

18.3.2 Definitions: (i). Each symbol x1 , …, xn is called a switch.

 (ii). Every p  Pn is called a switching circuit.

 (iii). x1
i is called the complementation switch of xi.

 (iv). xixj is called the series connection of xi and xj.

 (v). xi + xj is called the parallel connection of xi and xj.

 (vi). For p  Pn the corresponding polynomial function p Pn(B) is called the

switching function of p.

 (vii). P (a1 , …, an) is called the value of the switching circuit p at (a1 , …, an)  Bn.

Here the elements ai of B are called input variables.

18.3.3 Note: It is possible to model electrical circuits by using Boolean polynomials.

 (i) Consider the Figure-9. This switching circuit represents

the Boolean polynomial p = x1 (x2(x3 + x4) + x3(x5 + x6)).

S1 S2 , …..

Figure-8

S1 S1
1

 Advanced Discrete Mathematics 18.5 Switching circuits…

 (ii) Consider the Figure-10. This switching circuit represents the Boolean polynomial

q = x1(x2
1 (x6 + x3 (x4 + x5

1)) + x7(x3 + x6)x8
1).

18.3.4 Note: Consider the figures-6 and 7 (given in the solution of the

 Problem 18.2.3).

Figure-6 represents the polynomial p = x1  (x2  x3).

Figure-7 represents the polynomial q = (x1  x2)  (x1  x3).

It is clear that p ~ q . That is one of the polynomials p or q can be obtained from the other
by using the laws of Boolean algebra.
So there exist two different electric circuits p and q which operate "identically" if their
values are equal for all possible combinations of the input variables a1, a2, …, an.
This means, there exists two distinct electric circuits whose corresponding polynomials are

p and q (p and q are different polynomials) such that p B = q B. (that is, p ~ q)

18.3.5 Note: Algorithm to find a simplified electrical circuit:

Suppose an electrical circuit (say, circuit-1) is given.

Step-(i): Find the polynomial p which represents the electrical circuit-1.

Step-(ii): By using Quine-McCluskeyalgorithm, simplify the polynomial p. Suppose a

simple form of p is q. Now q got more simple form than p, and p ~ q.

Step-(iii): Write down the electrical circuit (say, circuit-2) which represents q.

In this way we can get a simple electrical circuit (circuit-2) which operates identically to the

given electrical circuit (circuit-1).

6

5

x

x
x3

x2

- x1

4

3

x

x

Figure-9

1
5

4

x

x

6

3

x

x
x7

x2
1

- x1
6

3

x

x

Figure-10

x8
1



Centre for Distance Education 18.6 Acharya Nagarjuna University

18.4 GATING NETWORKS:

18.4.1 Note: (i) We may represent the polynomial (or the

circuit) x1x2 + x1x3 as follows:
31

21

xx

xx




(ii) The electrical realization for the polynomial x1x2 + x1x3 is given by the following figure.

18.4.2 Note: In the above Note 18.4.1., we presented a method of representing a given

polynomial in the form of a switching circuit. Now we provide a new representation.

This new representation consist of some boxes, which converts input variables into values.

 (i) Consider the following diagram-1. Here a1, …,an are input variables. The polynomial p

 Pn converts the given set of inputs into the value p (a1 , …, an).

(ii). For example, consider the polynomial p = a1a2 + a1a3. Here a1, a2, a3 are input

variables.

polynomial p converts the variables into the value p (a1 ,a2, a3) = (0 or 1).

18.4.3 Note: (i). Some switches or switching circuits may be represented by some new type

of diagrams which are called as gates.

By using these gates, we can represent any switching circuit as a combination of the gates.

This is a symbolic representation.

(ii). From (i), we can conclude that a gate (or a combination of gates) is a

polynomial p.

31

21

SS

SS




 p (a1 , …, an)

n

2

1

a

:

a

a

Input variables
aiв

P Pn

Diagram-1

3

2

1

a

a

a

 a1a2 + a1a3 Diagram-2

P

 Advanced Discrete Mathematics 18.7 Switching circuits…

(iii). A symbolic representation (that is, a combination of gates) which represents a

polynomial, is called a gating network.

18.4.4. Notation: Different gates that we use are given below:

18.4.5. Notation: We also use a small black disk (either before or after) one of the other

gates to indicate an inverter.

18.4.6 Example:

18.4.7 Definitions:

(i) identity-gate (symbolizes x); a a

(iii)
AND-gate
(symbolizes
x1x2 … xn);

a1

a2

:

an

a1a2 … an

(iv)
OR-gate

(symbolizes

x1 + … + xn)

a1

a2

:

an

a1 + … + an

a2
a1a2

1 a1
(ii)

(iii)
a2

(a1a2)1
a1

NAND-gate or
Sheffer-operation

(ii)
NOT-gate (or inverter)

(symbolizes x1);
a1 a

a2
(a1a2)1

a1
(i)

a2

a1
a1

1 + a2 Subjunction-gate (i)

a2

a1
(a1 + a2)1 NOR-gate or
 Pierce-operation

(ii)

Centre for Distance Education 18.8 Acharya Nagarjuna University

18.4.8 Problem: Write down the gating network for the polynomial p = (x1
1x2)1 + x3 .

Solution: The required gating network is given by the Figure-11.

18.4.9 Problem: (i) Find the polynomial p which corresponds to the gating network given in

the Figure-12.

(ii) Find a simplified gating network which operates in the same way as the gating

network given in Figure-12.

Solution: (i) The polynomial that represents the given gating network is

p = ((x1x2)1x3 + x4) (x1x2 + x3
1x4).

 (ii) By using the Quine-McCluskey algorithm we get a

simplified form q = x1x2x4 + x3
1x4 of p.

Now, the gating network which represents q is given by the Figure-13.

18.4.10 Note: From the problem 18.4.9, we conclude the following: (i) p  q, and p q

a3
a2

a1

P (a1 , a2, a3)

Figure-11

a4

a3

a2

a1

Figure-12

a4

a3

a2

a1

Figure-13

 Advanced Discrete Mathematics 18.9 Switching circuits…

(ii) The gating network for q contains very less number of gates than that of the gating

network for p so q (the gating network for q) is much cheaper than q (the gating network

for p).

18.4.11 Note: In the following table we present all
222 = 16 Boolean polynomial functions

on B ={0, 1}.

The following table shows the functional values of these polynomial functions.

Some polynomials given in this table are important in the algebra of switching circuits. They

are given below:

18.5 SUMMARY:

In this lesson, we have studied an important application of Boolean algebra lies in the realm
of electrical engineering. We have illustrated several examples of switching circuits which
will be used in the next lesson to understand several applications to use of devices such as
mechanical switches, diodes, magnetic dipoles, and transistors are two state devices, etc. We
also provide another representation, called gating network of Boolean expressions. For better
understanding of the reader, we included examples.

2p … AND-function

3p … inhibit-function

7p … antivalence-function

8p … OR-function

9p … NOR-function

01p … equivalence-function

14p … implication-function

15p … NAND-function

b1 b2
1p 2p

3p

4p

5p

6p

7p

8p

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

9p

01p

11p

12p

31p

14p

15p

16p

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Centre for Distance Education 18.10 Acharya Nagarjuna University

18.6 TECHNICAL TERMS:

1. Complementation switch.
 x1

i is called the complementation switch of xi.

2. Series connection
 xixj is called the series connection of xi and xj.

3. Parallel connection
 xi + xj is called the parallel connection of xi and xj.

4. NOR gate

5. NAND-gate

18.7 SELF ASSESSMENT QUESTIONS:

1. Draw the switching circuit that represent the given Boolean expression: x1 (x2 x3).
Ans: (refer: Problem 18.2.3.(i))

2. Draw the switching circuit that represent the given Boolean expression:
 (x1 x2)  (x1 x3).
Ans: (refer: Problem 18.2.3.(ii))

3. Write down the equivalent Boolean polynomial for the given switching circuit.

Ans: The required Boolean polynomial is
q = x1(x2

1 (x6 + x3 (x4 + x5
1)) + x7(x3 + x6)x8

1).

4. Write an algorithm to find a simplified electrical circuit for a given Boolean expression.
Ans: (refer: Note. 18.3.5.)

1
5

4

x

x

6

3

x

x
x7

x2
1

- x1

6

3

x

x

Figure-10

x8
1



a2

(a1a2)1
a1

NAND-gate or
Sheffer-operation

a2

a1
(a1 + a2)1 NOR-gate or
 Pierce-operation

 Advanced Discrete Mathematics 18.11 Switching circuits…

5. Write down the gating network for the polynomial p = (x1
1x2)1 + x3 .

Ans: The required gating network is given by the Figure-11.

6. (i). Find the polynomial p which corresponds to the gating network given in the Figure-
12.

(ii). Find a simplified gating network which operates in the same way as the gating network
given in Figure-12.

Ans: (i). The polynomial that represents the given gating network is
p = ((x1x2)1x3 + x4) (x1x2 + x3

1x4).

 (ii). By using the Quine-McCluskey algorithm we get a
simplified form q = x1x2x4 + x3

1x4 of p.

Now, the gating network which represents q is given by the Figure-13.

18.8 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph

Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

a3
a2

a1

P (a1 , a2, a3)

Figure-11

a4

a3

a2

a1

Figure-12

a4

a3

a2

a1

Figure-13

Centre for Distance Education 18.12 Acharya Nagarjuna University

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

 Prof. Dr. Harikrishnan Panackal

LESSON 19

SOME APPLICATIONS

OBJECTIVE :

 To know Half Adder.
 To Understand the Applications of switching circuits
 To know the Full Adder.
 To have proper understanding of Applications.
 To develop skills to construct gatting networks.

STRUCTURE:

19.1 Introduction
19.2 Half-Adder and Full-Adder
19.3 Some Applications.
19.4 Summary
19.5 Technical Terms
19.6 Self Assessment Questions
19.7 Suggested Readings

19.1. INTRODUCTION:

In this lesson, we study various practical applications of switching circuits or networks.
Among different approaches of expressing Boolean expressions, gating network and
switching circuits have several applications in science, engineering and technology;.

19.2 HALF-ADDER AND FULL-ADDER:

In this section, we study two important gatting networks namely Half Adder, and Full Adder.

19.2.1 Note: Consider the polynomials s = (x1x2)1.(x1 +x2), and c = x1x2.

(i) Now we write a gating network (refer Gating Network-1) whose input is x1, x2 and the
output is the values of the expressions s and c at the given values
x1 = a1 and x2 = a2.

(ii) Observe Gating Network-1. If a1, a2 is the input to the Gating Network-1, then the

output is the values of s (a1, a2) and c (a1, a2) for all a1, a2  {0, 1}.

(iii) The Gating Network-1 is called half-adder.

a2 c (a1, a2)

s (a1, a2)

a1

Gating Network-1

-

Centre for Distance Education 19.2 Acharya Nagarjuna University

(iv) The gating network related to half-adder is denoted by

19.2.2 Problem: Let a1, a2  {0, 1}.

(i) Find out two polynomials p and c which represents the units digit and the 2's digit
(respectively) (we may call this 2's digit as carry) of the binary sum a1 + a2.

(ii) Write down the gating network to get polynomials p and c from the given
input a1, a2.

(iii) Find a simpler gating network to get p and c from the given input a1, a2.
 (If possible, use the half-adder).

Solution: (i) Suppose we add two single digit binary numbers a1 and a2.
Suppose p is the units digit of a1 + a2, and c is the 2's digit of a1 + a2.

For example, if a1 = a2 = 1, then the sum is 10, and so p (a1, a2) = 0, c (a1, a2) = 1.

The functional values for p (a1, a2) and c (a1, a2) is given by the table-1.

Observe table-1. Now by using table-1 and block box method, we get the following

disjunctive normal forms for p and c.

p = x1x2
1 + x1

1x2

c = x1x2.

(ii) Now we draw the gating network whose input is a1, a2 and output is p (a1, a2) and c
(a1, a2). This was given in the following gating network-2.

(iii) To find a simpler network for the gating network-2, we have to modify the expression for
p by using the laws of Boolean algebra.
The expression for c is already in simplest form.

a1 a2 p (a1, a2) c (a1, a2)
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

Table-1

c (a1, a2)

p (a1, a2)

a2

a1

Gating Network-2

HA

 Advanced Discrete Mathematics 19.3 Some Applications

Now p = x1x2
1 + (x1

1x2) = (x1
1+ x2)1 + (x1 + x2

1)1 (by Demorgan's laws)

 = ((x1
1+ x2)(x1

1+ x2
1))1 (by Demorgan's laws)

 = (x1
1x1 + x2x1 + x1

1x2
1 + x2x2

1)1 (by distributive law)

 = (x1x2 +x1
1x2

1)1 (by complement laws) = (x1x2)1 (x1
1x2

1)1 (by Demorgan's laws)

 = (x1x2)1.(x1 +x2) (by Demorgan's laws)

Write s = (x1x2)1.(x1 +x2). Now p ~ s.

The gating network for s and c is given in gating network-3.

It is clear that gating network-3 is a simpler network than the gating network-2.
By using the half-adder, we can represent the gating network-3 as follows:

19.2.3 Note: A gating network called as Full-adder can add three one-digit binary numbers.
Let a1, a2, a3 denote the three numbers to be added.
Suppose s denotes the units digit and c denotes the 2's digit of the sum a1 + a2 + a3.

 (i). The functional values are given in table-2.
The disjunctive normal form of the polynomials s and c are given below:

s = x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3.

c = x1x2x3 + x1x2x3
1 + x1x2

1x3+ x1
1x2x3.

a2 c (a1, a2)

s (a1, a2)

a1

Gating Network-3

a2

HA
c (a1, a2)

s (a1, a2) a1

a1 a2 a3 s (a1, a2, a3) c (a1, a2, a3)
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0

Table-2

Centre for Distance Education 19.4 Acharya Nagarjuna University

(ii). Suppose s1 denotes the units digit and c1 denotes the 2's digit of a2 + a3 .
Then the functional values are given in Table-3.

 (iii) Suppose c2 is the 2's digit of the sum a1 + 1s (a2, a3).
Then the functional values are given in Table-4.

(iv) The relation between c1, c2 and c presented in Table-5.

1c (a2, a3) 2c (a1 , 1s (a2, a3)) 2c (a1, a2, a3))

1 0 1
0 1 1
0 1 1
0 0 0
1 0 1
0 0 0
0 0 0
0 0 0

Table-5

Table-3

a2 a3 1s (a2, a3) 1c (a2, a3)
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

a1 1s (a2, a3) s (a1 , a2, a3) 2c (a1, 1s (a2, a3))
1 0 1 0
1 1 0 1
1 1 0 1
1 0 1 0
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

Table-4

 Advanced Discrete Mathematics 19.5 Some Applications

(v) Consider the gating network-4. Here we used two half-adders.

Now we understand that a2 and a3 are inputs of a half-adder with outputs 1s (a2, a3) and

1c (a2, a3).

The output 1s (a2, a3) together with a1 forms inputs of a second half-adder, whose

outputs are s (a1 , a2, a3) and 2c (a1 , 1s (a2, a3)).

Hence s (a1 , a2, a3) is the final sum a1 + a2 + a3.

 Finally, the sum of 1c (a2, a3) and 2c (a1 , 1s (a2, a3)) gives c (a1 , a2, a3).
This gating network is called the full-adder.
So a full-adder is composed of two half-adders and one OR-gate as shown in the gating
network-4.

Observe that gating networks 4 and 5 are same.
A symbolic representation of the full adder is given by

19.2.4 Problem: Find a polynomial p satisfying the following conditions:

p = x2x3 if x1 = 0

p = x2 +x3 if x1 = 1.

Solution: Suppose a1, a2, a3 {0, 1}. The functional values are given in table-6.

a3

a2 ADD
c (a1, a2, a3)

s (a1, a2, a3)
a1

1c (a2, a3)
1s (a2, a3) 2c (a1 , 1s (a2, a3))

a3

a2
HA

c (a1, a2, a3)

s (a1, a2, a3)
a1

HA

Gating Network-4

c (a1, a2, a3)

s (a1, a2, a3)
a1

a2

a3

Gating Network-5

Centre for Distance Education 19.6 Acharya Nagarjuna University

By table-6 and block box method, we get the disjunctive normal form for p.

The form is p = x1
1x2x3 + x1x2

1x3 + x1x2x3
1 + x1x2x3.

19.2.5 Example: (Chakrabarti's Cell): Suppose k = 2 and n = 5. We want to find a

polynomial p with the following conditions:

p (a1, a2, a3, a4, a5) = NOR(a3, a4, a5) if (a1, a2) = (0, 0);

p (a1, a2, a3, a4, a5) = OR(a3, a4, a5) if (a1, a2) = (0, 1);

p (a1, a2, a3, a4, a5) = NAND(a3, a4, a5) if (a1, a2) = (1, 0);

p (a1, a2, a3, a4, a5) = AND(a3, a4, a5) if (a1, a2) = (1, 1).

The polynomial p satisfying these conditions is given by

p = x2
1x3

1x4
1x5

1 + x1x2
1x3

1 + x1x2
1x4

1 + x1x2
1x5

1 + x1
1x2x3 + x1

1x2x4 + x1
1x2x5 + x2x3x4x5.

19.3 SOME APPLICATIONS:

In this section, we study some applications of switching circuits related to central lighting
system in a big room; paper movements and the related control mechanism in fast printers of
computers, and in the machines for paper production; and Elivator Services, etc .,

19.3.1 Some Applications:

Suppose there is a big room with central lighting system. To operate this central lighting
system there are switches at three different places near by the respective entrance doors.
These three switches operate alternatively. That is, each of these three switches can "switch
on" or "switch off" the lighting system.

(i) We wish to determine the related switching circuit p, and its symbolic polynomial
representation.
Each switch got two states: "on" or "off". We denote these three switches by x1, x2, x3

and the two possible states of the switches xi by ai  {0, 1}.

The light situation (whether on or off) in the room is given by the value

a1 a2 a3 p (a1, a2, a3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table-6

 Advanced Discrete Mathematics 19.7 Some Applications

 p (a1, a2, a3) = 0 (or 1) if the lights are off (or on), respectively.

We suppose that if all the three switches x1, x2, x3 are in the state "on" (that is, the value

of all the variables x1, x2, x3 is equal to 1) then the central lighting system is on (that is, the

value of p = 1).

So we write this situation as: p (1, 1, 1) = 1.

If we operate any one of the three switches, then the lights go off, that is we have

p (a1, a2, a3) = 0 for all (a1, a2, a3) which differ in one place from (1, 1, 1).

Similarly we have that p (a1, a2, a3) = 0 for all (a1, a2, a3) which differ in three places

from (1, 1, 1). In other words, p (a1, a2, a3) = 0 if (a1, a2, a3) = (0, 0, 0).

(ii) Suppose the lights are in the state on. Then if we operate any two switches, the lights

still stay on.

That is, we have that p (a1, a2, a3) = 1 for all those (a1, a2, a3) which differ in two places

from (1, 1, 1).

(iii) If the polynomial p satisfies the said set of conditions then we get the table-7 which
provides the function values.

From this table-7, we can get the following disjunctive normal form for p:

p = x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3.

a1 a2 a3 minterms p (a1, a2, a3)

1 1 1 x1x2x3 1
1 1 0 x1x2x3

1 0
1 0 1 x1x2

1x3 0
1 0 0 x1x2

1x3
1 1

0 1 1 x1
1x2x3

 0
0 1 0 x1

1x2x3
1 1

0 0 1 x1
1x2

1x3 1
0 0 0 x1

1x2
1x3

1 0

Table-7

Centre for Distance Education 19.8 Acharya Nagarjuna University

(iv) The gating network for p is given by the gating network-6.

Note that the above polynomial expression for p is already in minimal form.

 (v) Observe that

p = x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3.

 ~ x1(x2x3 + x2
1x3

1) + x1
1(x2x3

1 + x2
1x3) = q

 (vi) The switching circuit diagram for q was given in the Figure-1.

19.3.2 Example: In the fast printers of computers, and in the machines for paper production,
a careful control of the paper movements is essential. We present a diagram (please see the
diagram-2) which shows a schematic model of the method of paper movements and the
related control mechanism.

The motor operates a pair of cylinders (1), which helps the movement of paper (2).
Due to this paper strip (2) the light from lamp (3) can not be fall on the photo cell (4).
If the paper strip breaks, then the light from lamp (3) be fall on the photo cell (4).
Since the photo cell (4) receives the light and passes on an impulse which switch off the
motor.

(i) The light in lamp (3) can vary its brightness or it can fail. So an another photo cell (5)
supervises the brightness of the lamp (3).
The work of lamp is satisfactory if its brightness is above a fixed given value a.
If the brightness is below a, and above a minimum value b, then the situation is indicated
by the warning lamp (6). In this case, the paper movement mechanism still operates as it is.
If the brightness of the lamp is below b, then the photo cell (4) cannot work
satisfactorily, and so the motor is switched off.










32
1

3
1

2

xx

xx









3

1
2

1

32

xx

xx

x1

x1
1

Figure-1

a3
a2
a1

Gating
Network-6

 Advanced Discrete Mathematics 19.9 Some Applications

(ii) Now we represents this situation in mathematical symbols as follows:

a1 = 1 if the brightness of (3) > a;

a1 = 0 if the brightness of (3)  a;

a2 = 1 if the brightness of (3) > b;

a2 = 0 if the brightness of (3)  b;

a3 = 1 if the paper strip is broken;

a3 = 0 if the paper strip is unbroken.

Note that b < a.

(iii) Suppose 1p (a1, a2, a3) is the Boolean function related to the state of the motor, and 2p

(a1, a2, a3) is the Boolean function related to the state of warning lamp.

Now we define

1p (a1, a2, a3) = 1  motor operates;

1p (a1, a2, a3) = 0  motor is switched off;

2p (a1, a2, a3) = 1  warning lamp (6) operates;

2p (a1, a2, a3) = 0  warning lamp (6) does not operate.

(iv) The values of the functions 1p (a1, a2, a3), and

2p (a1, a2, a3) were presented in the table-8.

to motor

photo cell (4)

Paper strip (2)

Pair of cylinders (1) warning
lamp (6)

lamp (3)

p

p

photo cell (5)

Diagram-2

Centre for Distance Education 19.10 Acharya Nagarjuna University

Observe that the case a1 = 1, a2 = 0 cannot occur.

That is, the case a1 = 1, a2 = 0 is an impossible case.

At this situation, we may assign arbitrary values for 1p and 2p in the table-8 (Don’t-

care combinations).

Now in the impossible cases, we assign 0 for 1p and 2p (as don't care combinations)

(v) From table-8 we get the following disjunctive normal forms for p1 and p2.

p1 = x1x2x3
1 + x1

1x2x3
1 ~ x2x3

1.

p2 = x1
1x2x3+ x1

1x2x3
1 ~ x1

1x2.

(vi) From the above point (v), we conclude that the state of motor (p1) is not depend
on a1.
Also it is clear that the state of warning lamp (p2) is not depend on a2.

(vii) The gating network for the functions 1p and 2p given in the diagram-3.

19.3.3 Example: A motor is supplied by three generators. The operation of each generator
is monitored by a corresponding switching element which closes a circuit as soon as a
generator fails. We demand the following conditions from the electrical monitoring system:

(i) A warning lamp lights up if one or two generators fail.
(ii) An acoustic alarm is initiated if two or all three generators fail.

a1 a2 a3
1p (a1, a2, a3) 2p (a1, a2, a3)

1 1 1 0 0
1 1 0 1 0
1 0 1
1 0 0
0 1 1 0 1
0 1 0 1 1
0 0 1 0 0
0 0 0 0 0

Table-8

a1

a2

a3 1P (a1, a2, a3) = a2a3
1

2P (a1, a2, a3) = a1
1a2

Diagram-3

 Advanced Discrete Mathematics 19.11 Some Applications

We determine a symbolic representation as a mathematical model of this problem. Let a1 =

0 denote that generator i is operating, i  {1, 2, 3}; a1 = 1 denotes that generator i

does not operate. The table of function values has two parts 1p (a1, a2, a3) and 2p (a1, a2,

a3), defined by:

1p (a1, a2, a3) = 1 : acoustic alarm sounds;

1p (a1, a2, a3) = 0 : acoustic alarm does not sounds;

2p (a1, a2, a3) = 1 : warning lamp lights up;

2p (a1, a2, a3) = 0 : warning lamp is not lit up

Then we obtain the following table for the function values:

For p1 we choose the disjunctive normal form, namely

p1 = x1x2x3 + x1 x2x1
3 + x1x1

2x3 + x1
1 x2x3.

This can be simplified by using rules of a Boolean algebra:

p ~ x1x2 + x2x3 + x1x3.

For p2 we choose the conjunctive normal form, which is preferable if there are many 1's

as function values:

p2 = (x1 + x2 + x3)(x1
1x1

2x1
3).

The symbolic representation is

a1 a2 a3
1p (a1, a2, a3) 2p (a1, a2, a3)

1 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 0 0 0 1
0 1 1 1 1
0 1 0 0 1
0 0 1 1 0
0 0 0 0 0

1p (a1, a2, a3)

2p (a1, a2, a3)
a3
a2
a1

Centre for Distance Education 19.12 Acharya Nagarjuna University

One of the applications of Boolean algebras in the simplification of electromechanical
or electronic switching circuits. In order to economize, it is often useful to construct
switching circuits in such a way that the costs for their technical realization are as small as
possible, example that a minimal number of gates is used. Unfortunately, it is often difficult
to decide from the diagram of a switching circuit whether its technical implementation is
simple. Also, the simplest and most economical switching circuit may not necessarily be a
series-parallel connection, in which case switching algebra is not of much help. Some
methods of simplification other than the Quine-McCluskey algorithms are discussed in
Dornhoff and Hohn (1978) and also in Hohn (1970).

19.3.4. Remark: A switching circuit p can be simplified by our methods, as follows:

(i) It can be simplified according to the laws of a Boolean algebra (example, by applying the
distributive, idempotent, absorption, and de Morgan laws).

(ii) Sometimes calculating the dual d(p) of p and simplifying the dual yields a simple
expression.

(iii) We can also determine the minimal form of p by using the method of Quine and
McCluskey. Recall that this algorithm can only be started if p is in disjunctive normal
form.

(iv) Use Karnaugh diagrams.

19.3.5 Example: We give an example for the first two methods mentioned in 19.3.4.

(i) p = (x1
1+ x2 + x3 + x4)(x1

1+ x2 + x3 + x4
1)(x1

1+ x2
1+ x3 + x4

1).

 ~ (x1
1+ x2 + x3)(x1

1+ x3 + x4
1) ~ x1

1+ x3 + x3x4
1

Here, we have used the fact ( + )( +  1) =  twice.

(ii) p = ((x1 + x2) (x1 + x3)) + (x1x2x3)

 ~
  

1p:

32121))xxx()xx((



  

2p:

32131))xxx()xx((


 .

Let d denote "dual of".

We have d(p1) = (x1x2)(x1+ x2 + x3) ~ x1x2. Therefore d(d(p1)) ~ x1 + x2.

Also, (x1x3)(x1+ x2 + x3) ~ x1x3. Thus d(d(p2)) ~ x1 + x3. Altogether we have

 p ~ p1p2 ~ (x1x3)(x1+ x2 + x3) ~ x1 + x2x3.

We consider two more examples of applications (due to Dokter and Steinhauer (1972)).

19.3.6 Example: An elevator services three floors. On each floor there is a call-button C
to call the elevator. It is assumed that at the moment of call the cabin is stationary at one of
the three floors.

Using these six input variables we want to determine a control which moves the motor M
in the right direction for the current situation.

 Advanced Discrete Mathematics 19.13 Some Applications

One, two, or three call-buttons may be pressed simultaneously; so there are eight possible
combinations of calls, the cabin being at one of the three floors. Thus we have to consider

38  = 24 combinations of the total 26 = 64 input variables.

We use the following notations: a1 := ci (for i = 1, 2, 3) for the call-signals. ci = 0 (or

1) indicates that no call (or a call) comes from floor 4ai  := f1, a5 := f2, a6 := f3 are

position signals; fi = 1 means the elevator cabin is on floor)a...,,a(pi 611 =: M  ,

)a...,,a(p 611 =: M  indicate the direction of movement to be given to the motor; then

the signal M  = 1 means movement of the motor upward, etc. The output signals

(function values) of the motor does not operate.

If a call comes from the floor where the cabin is at present, again the motor does not operate.

Otherwise, the motor follows the direction of the call.

The only exception is the case when the cabin is at the second floor and there are two

simultaneous calls from the third and first floor. We agree that the cabin goes down first.

Figure 8.4 shows the table of function values.

From this table we derive the switching circuits p1 for M  and p2 for M in

disjunctive normal form.

Here xi are replaced by Ci for i = 1, 2, 3 and by Fi-3 for i = 4, 5, 6.

P1 ~ C1
1C2C3F1F1

2F1
3 + C1

1C2C1
3F1F1

2F1
3 + C1

1C1
2C3F1F1

2F1
3 + C1

1C1
2C3F1

1F2F1
3.

The first and third minterms are complementary with respect to C2 and can be combined.

This gives:

P1 ~ C1
1C2C1

3F1F1
2F1

3 + C1
1C3F1F1

2F1
3 + C1

1C1
2C3F1

1F2F1
3 .

For M  we obtain

P2 ~ C1C1
2C3F1

1F2F1
3 + C1C1

2C1
3F1

1F2F1
3 + C1C2C1

3F1
1F1

2F3

 + C1C1
2C1

3F1
1F1

2F3 + C1
1C2C1

3F1
1F1

2F3.

Centre for Distance Education 19.14 Acharya Nagarjuna University

The first two minterms are complementary with respect to C3, the third and fourth minterm

are complementary with respect to C2. Simplification gives

P2 ~ C1C1
2F1

1F2F1
3 + C1C1

3F1
1F1

2F3 + C1
1C2C1

3F1
1F1

2F3 .

f1

f2

f3

C3

C1

M 

M 

C2

Figure 2

Call Floor Direction of
motor

c1 c2 c3 f1 f2 f3 M  M
1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 1 0 0 1 0
0 1 0 1 0 0 1 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0
1 1 0 0 0 1 0 1
1 0 1 0 0 1 0 0
1 0 0 0 0 1 0 1
0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0

 Advanced Discrete Mathematics 19.15 Some Applications

The two switching circuits enable us to design the symbolic representation of Figure 2 (we

have six NOT-gates, AND-gates, and two OR-gates).

Observe that in above three Examples we had not only a switching circuit, but a switching

network, which differ from a circuit by having multiple outputs:

Optimizing such a network reduces to the minimization of all circuits

We have precisely done that in these examples.

As another example of applications of this type we consider the addition of binary numbers
with half-adders and adders. Decimals can be represented in terms of quadruples of binary
numbers; such a quadruple is called a tetrad.
Each digit of a decimal gets assigned a tetrad; thus we use then different tetrads

corresponding to

0, 1, 2, …, 9. Using four binary positions we can form 24 = 16 tetrads. Since we need

only ten tetrads, which are called pseudotetrads.

A binary coded decimal then uses the following association between 0, 1, …, 9 and tetrads:

1p (a1, a2, a3) = 1 denotes the pseudotetrads. We have to evaluate 1p (a1, a2, a3) to find out

if the result of a computing operation is a psedotetrad.

outputs

m

2

1

b

:

b

b






 Switching
network

a1

a2

:

a3

Inputs ;b i

a1

 :

an

 a3 a2 a1 a0
0p (a1, a2, a3)

 1 1 1 1 1
 1 1 1 0 1
 1 1 0 1 1
 1 1 0 0 1
 1 0 1 1 1
 1 0 1 0 0
9 1 0 0 1 0
8 1 0 0 0 0
7 0 1 1 1 0
6 0 1 1 0 0
5 0 1 0 1 0
4 0 1 0 0 0
3 0 0 1 1 0
2 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 0

a3

a2

a1

Centre for Distance Education 19.16 Acharya Nagarjuna University

We represent p in disjunctive normal form:

p = x3x2x1x0 + x3x2x1x1
0 + x3x2x1

1x1
0 + x3x1

2x1x0 + x3x1
2x1x1

0.

The pairs of minterms 1 and 2, 3 and 6 are complementary with respect to x0 and can

be simplified:

p ~ x3x2x1 + x3x2x1
1 + x3x1

2x1

 ~ x3x2x1 + x3x2x1 + x3x2x1
1 + x3x1

2x1

 ~ (x3x2x1 + x3x2x1
1) + (x3x2x1 + x3x1

2x1)

 ~x3x2 + x3x1 ~ x3 (x2 + x1).

This result indicates that determining if a tetrad with four positions a0, a1, a2, a3 is a
pseudotetrad is independent of a0. If we use the ai as inputs, then Figure 8.6 indicates
the occurrence of a pseudotetrad.

19.4 SUMMARY:

In this lesson, we studied two important gatting networks namely: Half adder, and Full adder,
also presented their diagrams. we have described some applications through examples using
Boolean expressions and gating networks. These are having useful applications in electrical
engineering and network engineering. In particular, in the last section, we study some
applications of switching circuits related to central lighting system in a big room; paper
movements and the related control mechanism in fast printers of computers, and in the
machines for paper production; and Elivator Services, etc .,

19.5 TECHNICAL TERMS:

1. Half-adder.

(refer: Example. 19.2.1.)

2. Full-adder.
A gating network called as Full-adder can add three one-digit binary numbers.
(refer: Note 19.2.3.)

3. Chakrabarti's Cell:
(refer: Example 19.2.5.)

19.6 SELF ASSESSMENT QUESTIONS:

1. Draw the diagram of Half Adder.

Ans: (refer: Example. 19.2.1.)

2. What the Full-adder can do. Draw the diagram of Full adder.

Ans: A gating network called as Full-adder can add three one-digit binary numbers.
(refer: Note 19.2.3.)

3. What do you mean by Chakrabarti's Cell.

Ans: (refer: Example 19.2.5.)

 Advanced Discrete Mathematics 19.17 Some Applications

19.7 SUGGESTED READINGS:

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3.

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer,
1977.

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.

Prof. Dr. Harikrishnan Panackal

	LESSON -2
	LESSON - 3
	NORMAL FORMS
	LESSON- 4

