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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.Gangadhara Rao 
M.Tech.,Ph.D., 

Vice-Chancellor I/c 
Acharya Nagarjuna University 
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CODE:105MA24 
M.Sc DEGREE EXAMINATION 

First Semester 

Mathematics :: Paper V- ADVANCED DISCRETE MATHEMATICS 

MODEL PAPER-I 

Time: Three hours                                                                               Maximum:70 Marks 
 
Answer ONE question from each unit                                                               (5x14=70) 

 
UNIT-I 

1. (a). What do ou mean by Conjunction and Disjunction. Explain by giving one 
example to each. Also write truth tables for both Conjunction and Disjunction. 

 
(b). If p and q are two statements, then show that the statement (p  q)  (p  q) is 

equivalent to (p v q)  (p  q) . 
 

(OR) 
 
2. (a). Write down the Contrapositive of the following statement: 

“If Rama have Rs.100/- with him, then he will spend Rs. 50/- for his friend 

Krishna”. 
 

(b). Find the PCNF of the given statement formula  F = X  Y . 

 
UNIT-II 

3. (a). Explain the terms: Predicate, 2-place predicate, and m-place predicate. Give one 
example for each. 

 
(b). Symbolize “All the people respects selfless leaders”. 

(OR) 

4. (a). Explain: Universal specification, Universal generalization, Existential specification, 
Existential generalization. Give one example each. 

 
(b). Prove the validity of the following argument by using the rules of inference. 

All men are warriors. (Premise–1) 
All Kings are men. (Premise–2) 
Therefore All Kings are warriors. 



UNIT-III 

5.(a). Define input-output Machine. Explain the Parity-Check Machine and write down its 
State table. 

. 
(b). Let f be a state homomorphism from the state machine M = (ζ, ℐ, δ) onto the 

state machine M1 = (ζ1, ℐ, δ1). Then prove that there is a state machine congruence 
on M such that M is isomorphic to M1. 

(OR) 
 
6. (a). Let M =  (ζ, ℐ, O, δ, θ)  be an i/o-machine and let    an i/o-machine 

 

congruence.  Then prove that  M =  ( , ℐ, O,  δ , θ)  is an i/o-machine and the 
function  f  from  ζ onto  given by  f(s) = [s] is an i/o-homomorphim form 

 

M  onto M . 
 

(b). Minimize the number of states for the machine given by the following state table. 

Also write down the reduced machine of the given machine. 
 

States 
δ θ 
0 1 0 1 

s0 s0 s2 0 0 
s1 s2 s5 1 0 
s2 s2 s2 1 1 
s3 s1 s1 1 1 
s4 s2 s3 0 1 
s5 s4 s5 1 1 

s6 s2 s6 1 1 

 
UNIT-IV 

 
7. (a). Define Lattice ordered set, and Algebraic Lattice. 

Prove that a Lattice ordered set can be turned into an Algebraic Lattice. 
 

(b). (i). Give two examples of lattices with five elements. 
 

(ii). Give two examples of lattices with six elements. 
 

(iii). Define product lattice of a collection of lattices. 
 

(OR) 
 
8. (a). Define modular lattice and distributive lattice. 

Prove that every distributive lattice is a modular lattice. 
 

(b). Find the d.n.f of the following function f : 

f(x1, x2, x3) = [x1  ( (x 2 v x 3 )1 )] v{[(x1  x2) v x 3
1 ]  x1}. 



UNIT-V 
 
9. (a). Define Boolean Algebra. 

If B is a finite Boolean algebra, and A denotes the set of all atoms in B, then prove 
that B is Boolean isomorphic to P(A). 

 
(b). Let B be a Boolean algebra and I a non-empty subset of B. Then 

prove that the following three conditions are equivalent: 

(i) I  B (That is, I is an ideal of B); 

(ii) If i, j ϵ I and  b ϵ B such that  b   i, then  i + j ϵ I  and b ϵ I. 

(iii) There exists a Boolean algebra B1 and a Boolean homomorphism h : B → B1 such 
that I = Ker h. 

 
(OR) 

 
10. (a). (i). What do you mean by Karnaugh diagram. Give an example. 

(ii). Simplify the polynomial p = (x1 + x2)(x1 + x3) + x1x2x3 by using its Karnaugh 
diagram. 

 
(b).(i). Draw switching circuit which represent the Boolean expression: 

x1 (x2v x3). 
(ii). Draw NAND gate. 
(iii). What do you mean by Half-adder and Full adder. Explain with their 

diagrams. 
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LESSON - 1 

STATEMENTS, CONNECTIVES, AND TRUTH 
TABLES 

 

 
OBJECTIVE:  
 
 To know Statements 
 To understand the Meaning of syllogism 
 To identify different types of notations 
 To Learn the validity of the arguments  
 To have proper understanding of different connectives 
 To develop skills to construct the truth tables 

 
STRUCTURE 

1.1   Introduction 
1.2  Statements. 
1.3. Syllogism. 
1.4  Notations. 
1.5  Connectives and Truth Tables  
1.6  Summary  
1.7  Technical Terms  
1.8  Self Assessment Questions  
1.9  Suggested Readings 
 
1.1.  INTRODUCTION:  

 
Logic is a form of reasoning.  The main object of the logic is to explain the rules by 

which one can determine the validity or to know the strength of any particular argument or 
reasoning.  Logic deals with all types of reasons like: legal arguments, mathematical proofs, 
conclusions in a scientific theory based upon a set of given hypothesis. The rules are called 
“Rules of Inference”.  The rules should be independent of any particular argument or 
discipline or language used in the argument. 
 

Logic was discussed by its ancient founder Aristotle (384 BC – 322 BC) from two 
quite different points of view. On one hand he regarded logic as an instrument or organ for 
appraising the correctness or strength of the reasoning; On the other hand, he treated the 
principles and methods of logic as interesting and important topics of the study.  According to 
Charles Pierce “the logic is to classify the arguments, so that all those that are bad are thrown 
into one basket and those which are good into another”.  Thus the study of logic, is nothing 
but the study of the methods and principles to distinguish the correct (good) arguments from 
incorrect (bad) arguments.  The study of logic will provide the reader certain techniques for 
testing the validity of a given arguments.  So the logic is the science of reasoning.  Reasoning 
is a special kind of thinking called inferring, through which conclusions can be drawn. 
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1.2 STATEMENTS: 
 

In any language, a sentence is constructed by means of some words in that language. So a 
meaningful sequence of words  is called as a sentence. A statement is a sentence for which 
we can say whether it is true or false. 
 

We need an objective language to frame the rules of inference or theory.  The basic 
unit of our objective language is called a atomic statement or simple statement or primary 
statement (variable).  We assume that these primary statements cannot be broken down 
further or analyzed into simpler statements.  These primary statements have only one of the 
two possible values TRUE (T) or FALSE (F).  These values T or F are referred as truth value 
of the primary statement.  We often denote the truth value TRUTH (T) by ‘1’ and the truth 
value FALSE (F) by ‘0’. 
 
1.2.1. Examples:     
 

(i).    2 + 3 = 5. 
(ii). New Delhi is the capital city of HUNGARY. 
(iii). Open the door 
(iv).  2 + 3 = 6. 
  
 The sentence  (iii) is not a primary statement because it has neither the truth value ‘T’ 
nor ‘F’.  The remaining three statements are primary statements.  Statements (i) and  has the 
truth value ‘T’ (or 1), and the statements (ii) and (iv) have the truth value ‘F’ (or 0). 
 
1.3. SYLLOGISM: 
 
 We shall mean, by formal logic, a system of rules and procedures used to decide 
whether or not a statement follows from some given set of statements.   
 
1.3.1.  Note:  A familiar example from Aristotelian logic is: 
 
     (i).  All men are mortal 
     (ii). Socrates is a man 
Therefore (iii). Socrates is mortal. 
 

In order to have better understanding , we use symbols. The symbols are easy to manipulate. 
Hence, the logic we study is also named as “Symbolic logic”.  
 
According to the logic, if any three statements have the following form 

(i) All M are P 
(ii) S is M 

Therefore (iii) S is P 
 
then (iii) follows from (i) and (ii).   
The argument is correct, no matter whether the meanings of statements (i), (ii), and (iii) are 
correct.  All that required is that they have the forms (i), (ii), and (iii).  In Aristotelian logic, 
an argument of this type is called syllogism. 

Example 1.1 

Example 1.2 
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The formulation of the syllogism is contained in Aristotle’s organon.  It had a great 
fascination for medieval logicians, for almost all their work centered about ascertaining its 
valid moods.  The three characteristic properties of a syllogism are as follows: 
 
(i).  It consists of three statements.  The first two statements are called as premises, and the 
third statement is called as conclusion.  The third one (conclusion) being a logical 
consequence of the first two (the premises). 
 
(ii). Each of the three sentences has one of the four forms given in the Table -1: 
 

Classification Examples 
Universal and affirmative judgment All X is Y. 

All monkeys are tree climbers. 

All integers are real numbers. 

All men are mortal. 

Universal and negative judgment No X is Y. 

No man is mortal. 

No monkey is a tree climber. 

No negative number is a positive number. 

Particular and affirmative judgment Some X is Y. 

Some men are mortal.  

Some monkeys are tree climbers. 

Some real numbers are integers. 

Particular and negative judgment Some X is not Y. 

Some men are not mortal. 

Some monkeys are not tree climbers. 

Some real numbers are not integers. 

Table -1 
 
1.3.2. Note:   
Consider Example -1.2.  The first two propositions are premises and the third is the 
conclusion.  Here the subject of the conclusion is “S”; and the predicate of the conclusion is 
“P” and the term to which they are both compared is called the middle term and is denoted by 
“M”. 

 
Consider Example -1.1.  The first two propositions  

“All men are mortal” 
“Socrates is a man” 

are premises.   The third proposition 
 “Socrates is mortal”  
is the conclusion.  The subject of the conclusion is “Socrates” and the predicate of conclusion 
is “mortal”.  The middle term is “men”. 
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1.3.3 Example:  (i).  All fishes are mammals 
  (ii). All mammals have wings 
Therefore  (iii). All fishes have wings. 
This argument is valid.  Note that both the premises are false, and the conclusion also false.  
The argument of this example 1.3 is valid because if its premises were true then its 
conclusion would have to be true.  Thus the validity of an argument does not guarantee the 
truth of the conclusion. 
 
1.3.4 Example: (i).  No Professors are rich 
  (ii). All handsome men are Professors 
Therefore  (iii). No handsome men are rich. 
This argument/syllogism is valid (it is similar to Example 1.3).  Note that both the premises 
are false, and the conclusion also false.  So we may conclude that the validity of a syllogism 
is independent of the truth or falsity of its conclusion. 

1.3.5 Example:  (i). The denominator of 
18

14
 is even. 

  (ii). 
9

7
 is another name for 

18

14
. 

Therefore  (iii). The denominator of 
9

7
 is even. 

This is an invalid argument.  The subject in (i) relates to a part (called denominator) of 
18

14
.  

The subject in (ii) is not related to the denominator.  So, in this case, (iii) cannot get from (i) 
and (ii).  That is, we cannot get the conclusion from the premises. 
 
1.3.6 Example:  (i).  If I am President then, I am famous. 
  (ii).  I am not President 
Therefore (iii). I am not famous. 
 
Here the argument is clearly invalid because ‘one may be famous even though he/she is not a 
President’. 
 
1.4. NOTATIONS, CONNECTIVES AND TRUTH TABLES:  
 
1.4.1. Some Examples: (i) “x > 3” is a statement.  This statement is neither true nor false 
because the value of the variable x is not specified.  Therefore “x > 3” is not a proposition. 
“x + y + 4 = 7” is a statement but it is not a proposition. 
 
(ii). “10 > 3” is a statement.  This statement is true.  Therefore “10 > 3” is a proposition. 
 
(iii). “10 < 3” is a statement.  This statement is false (or not true).  Therefore “10 < 3” is a 
proposition. 
 (iv). “x  3 for all x such that x  5” is a statement.  This statement is true.   
Therefore, it is a proposition.                                
 (v). “Guntur is the capital of Andhra Pradesh” is a statement which is false.  Therefore it is a 
proposition. 
(vi).  “What is the time now ?”.  This is not a statement.  So this is not a proposition. 
(vii).  “2 + 2 = 3” is a statement which is false.  Therefore it is a proposition. 



 
 Advanced Discrete Mathematics                       1.5                      Statements, Connectives …  

1.4.2 Subject and Predicate:   Consider the statement “Ravana is a King”. In this 
statement “Ravana” is the subject of the statement. The other part “is a King” is called 
predicate. 

1.4.3. Notation 

Observe the following statements: 

(i) p: Socrates is a man. 

(ii) q:  2 + 3 = 6. 

(iii) In statements (i), (ii), p and q are the symbols used. Here “p” is a statement in 
symbolic logic that corresponds to the English statement “Socrates is a man”. 

 As we know,  “Socrates” is the subject and “is a man” is the predicate. The statement P 
(that is, “Socrates is a man”) contains only one subject and only one predicate. So this is a 
primary statement. 

 Similarly the statement “q” that represents 2+ 3 = 6 is also a primary statement. Note that 
the symbols “p” and “q” were used to represent the names of the statements. We may use this 
symbolic notation for statements throughout. 

 From the above discussions, one can understand that the basic unit of our objective 
language is called as  primary or atomic statement (or variable). We assume that these 
primary (or atomic) statements cannot be further broken down into simple statements. 

1.5.  CONNECTIVES AND TRUTH TABLES: 
 

By using connectives  “not’, “or”, “and”, etc., we may combine two or more primary 
statements. The words like “or”, “and” are called as connectives. 

1.5.1. Example:   Consider the two statements given by 

(i).   p:  Rama is a King 

(u). q:  Sita is a Queen. 

We know that the two statements (i) and (ii) are primary statements. By using the connective 
“and” we can combine these two statements to get the third statement: 

 (iii).   Rama is a King  and Sita is a Queen.  

The statement (iii) is called as compound statement. 

 The sentences constructed by using two or more primary (or simple or atomic) statements 
and certain sentential connectives are called as compound statements. The simple statements 
used to form compound statements are named as the components of the compound statement. 

To form compound statements we use simple sentences and the connectives “and”, “or”, 
“if....then....”, “if and only if”, etc. 

1.5.2. Example 

(i) p and q: Rama is a King and Sita is a Queen. 

(ii) p or q: Rama is a King or Sita is a Queen. 

(iii) If p then q: If Rama is a King, then Sita is a Queen. 

(iv) p if and only if q: “Rama is a King” if and only if “Sita is a Queen”. 
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1.5.3:  Negation:  
Associated with every given statement ‘p’ there corresponds an another statement called its 
negation. The negation of a statement is formed by using/adding  the word “not”.   
If “p” is a statement, then the negation of p  is “not P”(denoted by  “~p”, and called as 
negation of P).  The symbol “~” is called “curl” or “twiddle” or “tilde”.  The notation “~p” is 
false if “p” is true.  If “p” is false, then “~p” is true.  The symbol  p  ( or p  ) is also used to 
represent the negation of p. 
 
1.5.4: Examples:   
(i). Let p be the statement “New York is a city”.  Now ~p is the statement “Not, New York is 
a city” (equivalently, “New York is not a city”). 
(ii)  If “p :  Rama is a King”, then “~ p:  Rama is not a King”. 
(iii).  If “ U : No angle can be trisected by suing straightedge and compass alone”, then  
“ ~U: Some angles can be trisected by using straightedge and compass alone”. 
 
1.5.5.  The truth Table for the negation of a statement 
  

P ~P 
1 0 
0 1 

 
As we know, here T (or 1) stands for “True” and F (or 0)stands for “False”. 
 

1.5.6.  Conjunction:   
The conjunction (in symbol,  (read as meet or and)) is commonly used to combine sentences 
/ statements larger ones.   The symbol ampersand ( “&” ) also used for “and”.  The statement  
“A  B” or  “A & B” will be read as the “conjunction of A and B”.   Let P and Q be 
statements.  The conjunction of P and Q (denoted by  P  Q) is true when both P and Q are 
true; and is false otherwise. In other words, P  Q is true only if both P is true and Q is true. 
 

1.5.7: Examples:   

(i). If  P :  Rama is a King ;   Q :  Sita is a Queen , then  . 
 P  Q :  Rama is a King and Sita is a Queen. 

(ii).  If   P :  Two is an even number  ;   Q :  Two is a positive number , then  . 
 P  Q :  Two is an even number and a positive number. 
 
1.5.8:  Truth Table for conjunction 
 

P Q P  Q 
T T T 
T F F 
F T F 
T F F 

1.5.9:   Disjunction:  
The disjunction ( “or”, in symbol   ) is used to connect two  sentences / statements to form a 
combined sentence/ compound statement.  The symbol    is also called as join.    “P  Q” is 
called as disjunction of  P, Q.  If “P” and “Q” are statements, then “P  Q” is a statement that 
is true when “P” is true or “Q” is true or both are true.   
In other words, “P  Q” is false only when both “P” and “Q” are false. 

P ~P 
T F 
F T 
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1.5.10.  Examples: (i).  If  P :  Rama is a King ;    
                                        Q :  Sita is a Queen , then  . 
 P  Q :  Rama is a King or Sita is a Queen. 

 

(ii).  If   P :  Two is an even number  ;    

             Q :  Two is a positive number , then  . 
 P  Q :  Two is an even number or  a positive number. 
 
1.5.11:  Truth Table for disjunction 
 

P Q P  Q 
T T T 
F T T 
T F T 
F F F 

1.5.12. Example:  Write the following statements in symbolic form 

(i) Rama and Bhima are rich 

(ii) Neither Rama nor Sita is poor 

Solution: Suppose that 

 p: Rama is rich 

 q: Bhima is Rich 

 Then the given statement can be written in the symbolic form as p q . 

(i) write 

 p: Rama is poor 

 q: Sita is poor. 

Then 

 ~p: Rama is not poor 

 ~q: Sita is not poor  

The other form of the given statement is “Rama is not poor” and “Sita is not poor”, hence 
the required answer is (~p)  (~q). 

1.5.13 Example 

Obtain the compound statement that is true if exactly two of the three statements p, q and r 
are true? 

Solution: We know  that 

 (i).  (p q)  (r) is true if “p and q are true” and “r is false”. 

 (ii). (p r)  (q) is true if “p and r are true” and “q is false”. 

 (iii). (q r)  (p) is true if “q and r are true” and “p is false”. 
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 Hence            p q 7r p r 7q q r 7p                   is the compound statement that is 

true when exactly two of the given three statements p, q and r are true.  

1.5.14. Notation:  For any two given statements p and q 

(i) The compound statement (p  q) is denoted by “p ↑ q” 

(ii) The compound statement is(pq)  denoted by  “p  q” 

(iii) Note that the symbols “↑” and “” are also connectives. 

    (iv).  The truth table for “p ↑ q” is given by 

 
p q p  q p  

q  
T T T F 
T F F T 
F T F T 
F F F T 

Truth table for “p  q” 

   (v).  The truth table for “p  q” is given by 

 
p q p  q p  q  
T T T F 
T F T F 
F T T F 
F F F T 

Truth table for “p  q” 

1.5.15 Statement Formulas and Truth Tables 

We know that the statements those contains one or more simple statements and some 

connectives are called as compound (or composite or molecular) statements. 

 For example, if p and q are two simple statements,  

then p, p q , p q , p  (q), (p) ( q) are some composite statements.  

Such statements are also called as statement formulas derived from the simple statements p 

and q. In this situation, p and q are called as the components of the statement formulas. The 

truth value of a statement formulas depends on the truth value of the primary statements 

involved in it. 

As we already know,  p means negation of p:  and  ( p q ) means negation of ( p q ) 
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1.5.16. Example:    Construct the truth tables for the following statement formulas 

(i) ~(~p) [that is  (p)] 

(ii) q  (q) 

(iii) p (q) 

Solution: 
(i). 

 p ~p ~(~p) 
1 0 1 
0 1 0 

Truth Table for ~(~p) 

  Note that the truth value of both p and ~(~p) are same in all cases 
 
(ii). 

q 7q q(q) 

1 0 0 
0 1 0 

Truth table for q(7q)  

Note that the truth value of q(q) is always zero (0 or F).  
 
(iii). 

p q 7q p(q) 
T T F T 
T F T T 
F T F F 
F F T T 

Truth Table for p (7q)  

1.5.17.  Implication (or Conditional Statement):  

The implication of the statements p and q is a statement  that has the form “if p, then q” 

(denoted by p q ). The truth value of “ p q ” is false only if “p is true” and “q is false”. In 

all other cases, the statement “ p q ” has truth value “true” (or T). In this implication p is 

called the hypothesis (or antecedent or premise) and q is called the conclusion (or 

consequence). 

 
 “P  Q” can be read in any one of the following different ways:   
  (i).   P implies Q;   
(ii).  Q is a (logical) consequence of P;   
(iii). P is a sufficient condition for Q;    
(iv). Q is a necessary condition for P;    
(v). If P then Q;                        
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(vi).  P only if Q. 
We may also denote “P  Q”  by  “P    Q”.    
 
Truth Table for “Implication” is given below 
 

 

 
1.5.18. Examples:  

(i). “If x > 10, then x > 2” (or “x > 10  x > 2”) is a true statement (because if “x > 10” is 

true, then “x > 2” is also true) 

(ii) If “today is a Sunday, then tomorrow is a Monday”  (In other words,  today is a Sunday 

 tomorrow is a Monday) is true. 

(iii). If “today is a Sunday, then tomorrow is a Saturday” is not true. 

(iiii).    If “x = 5”, then “2x = 10” is a true statement.   

In other words,  “x = 5”  “2x = 10”  

1.5.19. Example:    Construct the truth table for p p q   

Solution: 

p q p  
q 

p  p   
q 

1 1 1 1 
1 1 1 1 
0 0 1 1 
0 0 0 1 

Truth Table for p  p   q 

 

Note that the truth value of the statement  p p q   is always 1.  
 

1.5.20 Biconditional (or Double implication):    

If p ,  q are statements, then the double implication of the statements p, q is a statement 

 “p if and only if q” (denoted by p  q).  

The truth value of p  q is true if “p” and “q” have the same truth values and is false if they 
have opposite truth values.   The symbol “  ” may be read as “if and only if”.  Note that  p 
 q  is nothing but the statement:  

 “(p    q) and (q    p) ”  (or (p    q)  (q    p)  ) 

  

 

P Q P  Q 
T T T 
T F F 
F T T 
F F T 
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The truth table for “Double implication” is given below 
   

p q p  q 
1 1 1 
0 1 0 
1 0 0 
0 0 1 

Truth table for p  q 

 

1.5.21. Well formed formulas:   

As we know a “statement formula”  is an expression which is a sequence of variables, 
parentheses and connectives.  Now we present a recursive definition for “statement formula”.   
It may be often called as a well-formed formula. 

 A well-formed formula can be generated by the following way: 

Rule-1: A statement symbol (or variable) is a well-formed formula. 

Rule-2: If X is a well-formed formula then ~X is also a well formed formula. 

Rule-3: If X and Y are well formed formulas, then (x y) , (x y) , (x y) , (x  y) are also 

well formed formulas. 

 We conclude that a string consisting of statement symbols, parenthesis, connectives is a 

well formed formula if it can be obtained by finitely many applications of the rules 1, 2 and 3 

mentioned above. 

 Note that  p, p, p q , p q , (7p) q , p q , (p q) r  , (p q) (r q)    are some well 
formed formulas.  
 
1.5.22.  The operation  or  :   
 
There is an operation (which was not yet discussed, and used often) on statements (the 
operation is denoted by   or ).   

This operation is called as  “ring sum” (or “exclusive or”).   P  Q is the exclusive or of the 
statements P and Q.   
The rule is that P  Q is the proposition that is true when exactly one of P and Q is true, and 
is false otherwise.  
 The statement P  Q is also denoted by  P   Q. 
 
The truth table for P  Q is given by  
 

P Q P  Q 
1 0 1 
0 1 1 
1 1 0 
0 0 0 
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1.5.23.  Examples:  
(i). Let P:  5 > 3 and Q: 8 > 4.  Since both P and Q are true (1), we have that P  Q is false 

(0). 

(ii).  Let P: “5 > 3” and Q:  “3 > 5”.  Since P is true and Q is false, we have that  P  Q is 

true. 

1.5.24 Example:   
If p and q are two statements, then show that the statement (p q) (p q)   is equivalent to 

(p q) (p q)   . 

Solution: In the following, we present the truth table for the given  two compound 
statements. 

Truth table 

p 
(1) 

q 
(2) 

p卯q  
(3) 

( p卭q)⊕( p ∧q) 
(4) 

p∨q  
(5) 

p卯q  
(6) 

( p∨q)∧( p卯q) 
(7) 

T T F F T F F 
T F T F T F F 
F T T F T F F 
F F T F F T F 

Since the values in columns (4) and (7) are same, we have that the two given statements are 
equivalent. 
 
1.6  SUMMARY:   
 
Logic is a form of reasoning.  The main object of the logic is to explain the rules by which 
one can determine the validity or to know the strength of any particular argument or 
reasoning.  The rules are called rule of inference.  We learnt basic terms of logic such as 
syllogism and truth values of the argument, etc. 
 
1.7  TECHNICAL TERMS: 

 

Truth values:  
The primary statements have only one of the two possible values TRUE (T) or FALSE (F).  
TRUTH (T) by ‘1’ and the truth value of FALSE (F) by ‘0’.  T or F are called as truth values 
of the statement. 
 

Syllogism:  
It is an argument consisting of two propositions called premises and a third proposition called 
the conclusion. 
 
1.8  SELF ASSESSMENT QUESTIONS: 
 
1.  Check whether the following arguments/statements are valid.  If necessary, support  your 
answer with reasons. 
     (a). If 18 is divided by 3, the result is 5  (Ans: FALSE) 
     (b). We use 3, 5, 6 to write 315.  (Ans: FALSE) 
     (c). The denominator of 5/9 is even (Ans: FALSE) 
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     (d). The numerator of 5/9 is odd (Ans: TRUE) 
 

2.  Observe the argument.   
     The denominator of 5/9 is odd 
     10/8 is another name for 5/9. 
     Therefore the denominator of 10/18 is odd.  (Ans: Not valid) 
 

3.    All who ride by airplane were born after A.D.1800.  
       Socrates rode by air plane.   
       Therefore Socrates was born after A.D.1800.      
       (Ans: argument is valid, but conclusion is false) 
 

4.  All monkeys are tree climbers 
     All marmosets are monkeys 
     Therefore all marmosets are tree climbers. 
     (Ans: argument is valid) 
 

5.  (i).   All bats are mammals 
     (ii).  All mammals have lungs 
     Therefore (iii). All bats have lungs 
     (Ans: That is a valid argument.  But this argument contains false statement) 
 

6.  (i).   If Einstein were the president then he would be famous  
     (ii).  Einstein is not the president 
     Therefore (iii). Einstein is not famous. 
     (Ans: This argument is clearly invalid.  Here premises are true, but the conclusion    
      is  false)  
 

7.  (i).   All whales are heavy 
     (ii).  All elephants are heavy 
     Therefore (iii). All whales are elephants 
     (Ans: This not a valid argument). 
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LESSON -2 

TYPES, EQUIVALENCES, IMPLICATIONS OF 

STATEMENTS 
 

OBJECTIVE: 

 

 To know types of Statements. 

 To understand the Equivalence of Statements. 

 To identify different types of notations 

 To calculate truth values of the given statements.  

 To have proper understanding of different implications. 

 To develop skills in constructing the truth tables 

 

STRUCTURE: 

2.1    Introduction 

2.2    Some Types of Statements. 

2.3.   Equivalence of Statements / Formulas. 

2.4.   Duality and Tautological Implication. 

2.5    Summary 

2.6    Technical Terms  

2.7    Self Assessment Questions  

2.8    Suggested Readings 

 

2.1.   INTRODUCTION:  

 

In this Lesson, we study the important types of Statements namely Tautology, Contradiction, 

and Contingency.  Later, we study the Equivalences  and Implications of different 

Statements.  
 

2.2   SOME TYPES OF STATEMENTS: 
 

Tautology and contradiction are two different types of statements, and are important concepts 

in the study of logic. 

2.2.1 Tautology 

Tautology is a statement expression which has truth value ‘T’ for all possible values of the 

statement variables involved in the expression. 

2.2.2 Examples:   (i).  Show that p (p) is a tautology. 

 

(ii).  Form the truth table for the statement [p  (p  q)] p  .  Is it a tautology. 
 

Solution: (i). 

p ~p p∨( ∼p) 

1 0 1 

0 1 1 

Table for p (p) 
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 Observe the above Table for p (7p) .    In all cases, the truth value of p (p) is true, and 

so the statement  p (p) is a tautology. 

 

(ii).  The required truth table is given below: 

 

p q p  q p  (p  q) p  [p  (p  q)] p  

0 0 0 0 1 1 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 0 1 

 

Observing the above table we can conclude that the statement [p  (p  q)] p  is always 

true, and so it is a tautology.   

   

2.2.3.   Contradiction. 

A contradiction (or absurdity or Fallacy) is a statement expression whose truth value is 

always false.   

2.2.4. Examples:   (i).    Show that the statement p∧~ p  is a contradiction. 

 (ii). Show that [p  (p  q)] p  is a contradiction. 

 

Solution:   (i). 

p ~p p∧~ p  

1 0 0 

0 1 0 

Truth table for p ~ p  

  Observe the above truth table for the statement p∧~ p .  It is clear that in all cases, the 

truth value  of the statement p∧~ p   is ‘0’ (false), and so p∧~ p    is a contradiction. 

 

(ii).  Now we write down the truth table  

 

P q p  q p  (p  q) p  [p  (p  q)] p  

0 0 0 0 1 0 

0 1 1 0 1 0 

1 0 1 1 0 0 

1 1 1 1 0 0 

 

Observing the table, we can conclude that [p  (p  q)] p  is always false.  Hence                       

[p  (p  q)]  p  is a contradiction. 

2.2.5. Contingency 

A statement expression that is neither a tautology nor a contradiction is called a contingency. 
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2.2.6. Example:  (i).  Show that the statement  p  q  is a contingency. 

(ii). Prove that the statement   “ (p q) (p q)   ” is a contingency. 

         

Solution: (i).   Consider the following truth table for the given statement  p  q. 

 

p q p  q 

1 1 1 

0 1 0 

1 0 0 

0 0 1 

Truth table for p  q 

 Since  p  q is not a tautology, and not a contradiction, we conclude that it is a contingency. 

 (ii).  Let us observe the following truth table of given statement “ (p q) (p q)   ” . 

 

p q p →q  ( p∧q) ( p → q) →( p ∧q)  

T T T T T 

T F F F T 

F T T F F 

F F T F F 

Truth table for (p q) (p q)    

 Clearly all the truth values of the given statement is neither “T” nor “F”. Therefore the 

given statement is neither a tautology nor a contradiction, and so it is a contingency. 

2.3   EQUIVALENCE OF STATEMENTS / FORMULAS: 

In this section, we study the equivalence of the statements in the theory of logic. 

2.3.1  Equivalent Statements:  

 Let n be a positive integer and p1, p2, ...pn... are n variables.  Let A and B be two statements 

involving the n variables p1, p2, ...pn...  We say A and B are equivalent if the truth values of A 

is equal to the corresponding truth values of B for every 2n possible sets of truth values 

assigned to p1, p2, ...pn  .  If A is equal to B, then this fact is denoted by A B . In other 

words A B is a tautology. 

2.3.2. Examples:  (i).    Prove that the statements  p⇒q   and ∼p∨q  are equivalent. 

(ii).   Show that   ~ (~p)  is equivalent to P. 

 

Solution: (i).    Write   A:(p q) ,  and  B:  ∼p∨q  . Now we have to verify that A B . 

 Observe the truth table for the statements A and B which is given below. 
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p q ~ p p⇒q  ∼p∨q  

T T F T T 

T F F F F 

F T T T T 

F F T T T 

Truth table for A & B 

 We observe that the truth values of A and B are equal in all cases.  So the statement A is 

equivalent to statement B.  In other words,   A B  is a tautology. 

  

( ii).  Let us consider the two statements   A:  p,   B: ~ (~p) . 

 Observe the truth table for the statements A & B which is given below 

p ~ p 
~ (~ 

p)  

T F T 

T F T 

F T F 

F T F 

Truth table for statements p and   ~ (~p).  

 Observe the truth table.  We understand that A:  p,   B: ~ (~p) are equivalent. 

2.3.3. Equivalent formulas (One can verify the following statements through truth 

tables). 

1.   

p p p

p p p

  


    The Idempotent laws (with respect to  and ). 

2.   
p (q r) (p q) r

p (q r) p (q r)

     


     
 The Associative laws  (with respect to  and ). 

3.  
p q q p

p q q p

   


   
  The Commutative laws  (with respect to  and ). 

4.   
p (q r) (p q) (p r)

p (q r) (p q) (p r)

      


      
 The Distributive laws  (with respect to  and ). 

5.   
P F P

P F F

 

   

6.  

P T T

P T P

 

     
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7.     
P  (~ P)   T. 

       P   (~ P)   F              The Complement laws  (with respect to  and ). 

8.    
p (p q) p

p (p q) p

   


   
  The Absorption laws  (with respect to  and ). 

9. ~ (P  Q)   (~P  ~Q) 

               ~ (P  Q)     (~P  ~Q)     De Morgan’s laws  (with respect to  and ). 

 

2.3.4. Example:  (i).  Show that (not through the truth tables)  the two statements 

[ (p  q)   (p  r)]  and [p    (q   r )] are equivalent.  In other words prove that 

  [(p  q)   (p  r)] if and only if [p    (q  r )] 

Solution:     [(p  q)   (p  r)]   

    (~ p  q)  (p  r)  [since  (a  b)    (~a   b) (refer Example 1.3.2. (i))] .  

 (~p  q)   (~p   r)  [since  (a  b)    (~a   b) (refer Example 1.3.2. (i))]  

   ~p   (q  r )  (by Distributive Law)  

   p    (q  r )   [since  (a  b)    (~a   b) (refer Example 1.3.2.  (i))].  

This completes the solution. 

2.3.5.  Example: 

Let n be a fixed positive integer.    Consider the two statements:  

  p: n is an even number 

  q: n + 1 is an odd number 

Show that p and q are equivalent 

Solution: Let p be a true statement. Then n is an even number. Since n is even, it is clear that 

(n + 1) is an odd number. Hence q is true. 

 Similarly if q is true, then (n + 1) is an odd number and so  n = (n + 1) –1 is even. Hence p 

is true.  So we conclude that p q  is true.  In other words,  p and q are two different and 

equivalent statements. 

2.4  DUALITY AND TAUTOLOGICAL IMPLICATION: 

2.4.1.  Dual Statement:    

Let A and B be any two formulas.   Then A is said to be the dual of B, if A be obtained from 

B  by replacing “  ” by “ ” and “ ” by “ ”.  It is clear that if A is the dual of B, then B is 
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the dual of A.   Note that  (i). the connectives “ ” and “ ” are dual each other; and  the dual 

of the value  “T” is “F”, and the dual of F is T. 

2.4.2.   Examples:   

(i)  “ (p q) r  ”  is the dual of  “ (p q) r  ” 

(ii) (p q) T    is the dual of   (p q) T  .    

2.4.3.  Tautological Implications 

A statement A is said to tautologically imply a statement B if and only if A B  is a 

tautology. 

 This fact is denote by (same as) A B , we read it as “A implies B”.  In other words,  

A B states that “ A B is a tautology” or “A tautologically implies B”. 
 

2.4.4.  Note:  The connectivities  ,   are symmetric in the sense that 

  p q q p    

  p q q p     

2.4.5. Converse:   For any statement formula p q , the statement formula q p  is called 

as the converse of the statement p q , . 

2.4.6.  Inverse (or opposite):  For any statement formula p q , the statement formula ~p  

~q  is called the inverse (or opposite) of  p q  . 

2.4.7. Contrapositive 

For any statement formula p q , the statement formula  ~q  ~p   is called as the 

Contrapositive of  p q  . 

 

2.4.8. Note:   For the convenience of the reader we provide the concepts: Converse, inverse, 

and contrapositive, in one table. 

 

Given statement 

p  q 

Converse 

q  p 

Inverse (or opposite) 

 

~p  ~q 

(equivalent to the converse) 

Contrapositive 

 

~q  ~p 

(equivalent to the implication) 
 

2.4.9.  Example:   Write down the Contrapositive of the following statement. 

“If Rama have Rs.100/- with him, then he will spend Rs. 50/- for his friend Krishna”. 

 

Solution: write  p: “Rama have Rs. 100/- with him“ 

   q: “Rama spend Rs. 50/- for his friend krishna” 
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Given statement is “ p q ”.  

We know that the Contrapositive of “ p q ” is ~q  ~p. 

 It is clear that     ~ q: “Rama does not spend Rs.50/- for his friend Krishna” 

   ~ p: Rama does not have Rs. 100/- with him. 

 So the required statement is as follows: 

 If “Rama does not spend Rs. 50/- for his friend Krishna” then “Rama does not have Rs. 

100/-with him”. 

2.4.10. Some Implications 

The following implications have importance in proving further statements. All of them can be 

proved by using truth tables or by any other methods in study. 

p q p         .....(1.1) 

  (p    q)     q        .....(1.2) 

p (p q)         .....(1.3)  

 

~p    (p  q)                           .....(1.4) 

 

   q    (p  q)        .....(1.5)  

 

~ (p  q)     p           .....(1.6)  

 

~ (p  q)    ~ q         .....(1.7)  

 

p    (p  q)     ~p            .....(1.8) 

 

~p  (p    q)     q                               .....(1.9)   

 

(p q) (q r) (p r)                                        .....(1.10) 

(p q) (p r) (q r) r                                .....(1.11) 

  ~q    (p  q)    ~p                             .....(1.12) 

2.4.11 Example:   

Construct the truth tables for converse, inverse and Contrapositive of the statement  (pq). 

Solution: Given statement is “ p q ”. 

(i) The truth table of the converse (q  p)of the proposition “p  q” is as follows:  

p Q ( p → q )  q →p  

1 1 1 1 

1 0 0 1 

0 0 1 0 

0 0 1 1 
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Truth table for proposition “ q p ”     (Converse of proposition “ p q ”) 

(ii) The Truth table for the inverse (~ p  ~ q) of the proposition “ p q ” is as follows: 

p q ~ p ~ q p →q  ∼p →∼q  

1 1 0 0 1 1 

1 0 0 1 0 1 

0 1 1 0 1 0 

0 0 1 1 1 1 

Truth table for the proposition “~ p  ~ q” 

(Inverse proposition of proposition “ p q ”) 

(iii) The truth table for the Contrapositive (~ q  ~ p) of the proposition “ p q ” is as follows: 

p q ~ p ~ q p →q  ∼q →∼p  

1 1 0 0 1 1 

1 0 0 1 0 0 

0 1 1 0 1 1 

0 0 1 1 1 1 
 

2.5  SUMMARY: 

In this lesson some types of Statements namely:  Tautology, contradiction and Contingency 

were studied along with some examples.  Later equivalence of Statements or Formulas were 

introduced.  For better understanding of the reader some examples were provided.  Finally, 

the concepts Converse, inverse, and contrapositive of the given statements were introduced 

and the truth tables related to these concepts were calculated for the convenience of the 

reader. 
 

2.6  TECHNICAL TERMS: 

 

Tautology  

(Tautology is a statement expression which has truth value ‘T’ for all possible values of the 

statement variables involved in the expression.) 

 

Contradiction (A contradiction (or absurdity or Fallacy) is a statement expression whose truth 

value is always false). 

 

Contingency 

 (A statement expression that is neither a tautology nor a contradiction is called a 

contingency). 

 

Converse:   

 (For any statement formula p q , the statement formula q p  is called as the converse of 

the statement p q ). . 

Inverse (or opposite): 

 ( For any statement formula p q , the statement formula ~p  ~q  is called the inverse (or 

opposite) of  p q  ). 
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Contrapositive 

 (For any statement formula p q , the statement formula  ~q  ~p 

 is called as the Contrapositive of  p q ). 

 

2.7  SELF ASSESSMENT QUESTIONS: 

 

(i).  Write down the state table for the statement   [p  (p  q)] p     and find out whether it 

is tautology or contradiction or contingency  (Ans:  tatualogy) 

 

(ii). Let m be a fixed positive integer.    Consider the two statements:  

  a: m is an odd number 

  b: m + 1 is an even number 

Show that a and b are equivalent 

 

(iii).  Write down the Contrapositive of the following statement.  

“If Lakshmana have Rs.200/- with him, then he will spend Rs. 150/- for his brother  

Bharatha”. 

(iv).  Construct the truth tables for converse, inverse and Contrapositive of the statement  

(pq). 

 

2.8  SUGGESTED READINGS:  

 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 

Theory, Prentice Hall India Ltd. New Delhi, 2014 (second edition) ISBN-978-81-203-

4948-3. 

2.  James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 

1977. 

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-

9780367367237  

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  

 

  

Prof. Dr. Bhavanari  Satyanarayana 



 

 

LESSON - 3 

NORMAL FORMS 
 

OBJECTIVE: 

 

 To understand Normal Forms. 

 To obtain Normal Form of a given expression.   

 To identify different types of notations 

 To understand some technique in forming the truth tables.  

 

STRUCTURE 

3.1   Introduction 

3.2   Normal Forms. 

3.3   Summary 

3.4   Technical Terms 

3.5   Self Assessment Questions 

3.6   Suggested Readings 

 

3.1.  INTRODUCTION  

 

In this Lesson, we study some important concepts:  Normal Forms, Disjunctive Normal 

forms, Conjunctive Normal Forms, Principle disjunctive Normal Forms, Principle 

Conjunctive Normal Forms. For the convenience of readers we included necessary examples. 

3.2. NORMAL FORMS 

Suppose that n is a positive integer,  P1, P2,...Pn are the atomic statements (or variables) and A 

(P1, P2,...Pn)  is a statement formula.  We know that each Pi have truth value T (or 1) or F (or 

0). Hence the truth table for (P1, P2,...Pn) have 2n values. So we can form the truth table for 

A(P1, P2,...Pn) with 2n rows. 

 If for all 2n values of (P1, P2,...Pn) the truth value of A(P1, P2,...Pn) is T (or 1) then the 

statement formula is said to be identically true. In other words, we say that A(P1, P2,...Pn) is a 

tautology. 

 If for all 2n values of (P1, P2,...Pn) the truth value of A(P1, P2,...Pn) is F (or 0) then the 

statement formula A(P1, P2,...Pn) is said to be identically false. In other words, we, we say 

that A(P1, P2,...Pn) is a contradiction. 

 If the truth value of A(P1, P2,...Pn) is True (T or 1) for atleast one of the truth values of (P1, 

P2,...Pn) then A(P1, P2,...Pn) is said to be satisfiable. 
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3.2.1. Decision Problem 

Suppose a statement formula is given, and we have to find whether it is a tautology or 

contradiction of satisfiable.  This problem of determining (in a finite number of steps) 

whether the given statement formula is a tautology (or) a contradiction (or) satisfiable is 

named as a decision problem. 

 So every decision problem in the statement calculus has a solution because we can decide 

this by forming a truth table for the given statement formula. 

 Now we study different forms (of a given statement formula) called as normal forms 

(i).  Disjunctive Normal Form (in short, DNF) 

(ii).  Conjunctive Normal Form (in short, CNF) 

(iii).  Principal Disjunctive Normal Form (in short, PDNF) 

(iv).  Principal Conjunctive Normal Form (in short, PCNF) 

 

3.2.2.   Disjunctive Normal Form (DNF or D.N.F or dnf) 

Let X1, X2,...Xn be n given atomic variables and 1 2 nX ,X ,...X (or ~X1, ~X2,... ~Xn) are the 

negations of X1, X2,...Xn respectively. 

Product (or meet,   ) of some elements from  1 2 n1 2 nX ,X ...X ,X ,X ...X is called as an elementary 

product. 

Sum (or join, ) of some elements from  1 2 n1 2 nX ,X ...X ,X ,X ...X is called as elementary sum. 

For example, i 1 531i j 3 4 2 n 1 2 4X ,X X , X X X , X X ... X , X X X X X         are some elementary 

products. 

 1 3 1 2 41 2 4 5 1 2 n 3 5X ,  X X , X X X ,   X X ... X ,  X  X  X X X           are some elementary sums. 

A statement formula which is equivalent to a given statement formula and which is of the 

form “a sum of elementary products” is called as Disjunctive Normal Form (DNF) of the 

given statement formula. 

 

3.2.3 How to find DNF 

Suppose the given statement formula is A(P1, P2,...Pn), and we wish to find its DNF. 

If it is already in the form: sum of elementary products then it is already in DNF.  

If it is not in the form of DNF then we use some known results or formulas or axioms step by 

step to get DNF. Most of the cases when ‘’ presents,  we use the known formula / result: 

  PQ  7 P  Q. [that is P Q ]. 

Also we use known laws like: distributive laws, demorgan laws, Commutative and 

associative laws, and so on.  One can observe in the next coming example. 
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3.2.4.  Example:   Find DNF of X  (XY) 

Solution:  X (X Y)   

   X (7X Y)     [Since  PQ  7 P  Q, a known result]      

                              X (7X) X Y     [by distributive law] 

 Now    X 7X X Y    is the sum of two elementary product terms X 7X  and X Y . Hence 

   X 7X X Y    is the DNF of the given statement formula  X X Y  . 

3.2.5. Conjunctive Normal Form (CNF or C.N.F. or c.n.f. or cnf):  

A statement formula which is equivalent to a given statement formula and which is of the 

form “a product of elementary sums” is called as Conjunctive Normal Form (CNF) of the 

given statement formula. 

3.2.6. Example:  Find CNF for the statement formula given by  X  (XY) 

Solution:  

    X X Y   

    X X Y   [Since  PQ  7 P  Q, a known result].  

The obtained form  X X Y  is a product of two sums: X and X Y .  

So it is in CNF. Hence  X X Y  is a CNF for the given statement  X X Y  . 

3.2.7.  Principal Disjunctive Normal Form (PDNF) (or sum of products canonical 

form). 

 Suppose  P1, P2, ..., Pn are n statement variables. The expression * * *

1 2 nP P ... P    where *

iP  is 

either Pi or ~Pi is called a minterm. It is clear that there exist 2n  minterms. 

The expression * * *

1 2 nP P ... P   , where *

iP  is either Pi or ~Pi is called a maxterm.  It is clear that 

there exist  2n  maxterms. 

Let P, Q, R be the three variables. 

Then the minterms are:  

P   Q   R,  P   Q   ~ R,  P   ~ Q   R,  P   ~ Q  ~  R,   

~ P   Q   R,  ~ P   Q   ~ R,  ~ P   ~ Q   R,  ~ P   ~ Q  ~  R,   

For a given statement formula, an equivalent statement formula which is in the form  

“disjunction (or sum or join) of minterms” is known as its Principal Disjunctive Normal Form 

(PDNF) (or sum of products canonical form). 
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3.2.8. Example:  Find PDNF for  X Y . 

Solution:     X Y X 1 Y 1      (since A  1 = A for all A) 

      X Y Y Y X X        
   

 (since A A 1  ) 

          X Y X Y Y X Y X          
   

 (by distributive law) 

          X Y X Y X Y X Y           [By commutative law]. 

                        
     X Y X Y X Y     

  
(since A A A  , idempotent law) 

 Now we got the form      X Y X Y X Y     which is the PDNF for  X Y .  

3.2.9. Note:  (i).  To find the PDNF of the given statement formula, there is a method named 

as ‘Black box method’.   

For convenience we use  ~p or  P  to denote negation of the statement p. 

(ii).  If there are three atomic variables p, q, r, then we use the notation given by the following 

table: 

Binary Notation Expression 

0 0 0 p  q  r  

0 0 1 p  q  r 

0 1 0 p  q r  

0 1 1 p  q r 

1 0 0 p q  r  

1 0 1 p q  r 

1 1 0 p q r  

1 1 1 p q r 

 We understand that p q r  is the product term (or related expression) for 000; pq r  is the 

related expression for 110.    

(iii).  Statements and related equivalent binary forms for three statement variables P, Q, R 

given below. 

P   Q   R (or PQR, the product of P, Q, R) (equivalent binary notation is 111),   

P   Q   ~ R (binary notation is 110),  P   ~ Q   R (binary notation is 101),   

P   ~ Q  ~  R (binary notation is 100),  ~ P   Q   R (011),   

 ~ P   Q   ~ R (010),  ~ P   ~ Q   R (001),  ~ P   ~ Q  ~  R (000),   

3.2.10.   Black Box Method (to find PDNF) 

Suppose that A(X1, X2, ...Xn) is the given statement formula where X1, X2, ...Xn are atomic 

statement variables and each atomic statement variable may attain its value either 0 or 1 (that 

is, False or True). 
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Form the truth table for A(X1, X2, ...Xn) which contains 2n rows. 

This truth table determines the PDNF, simply by adding all the product terms that occurs 

when A(X1, X2, ...Xn) takes Value 1. 

3.2.11. Example: 

Find PDNF for the given statement “P  Q” by Black Box Method (or by using truth tables) 

Solution: First we form the truth table for PQ. 

                                                             Or 

P Q 
P  

Q 

T T T 

T F F 

F T T 

F F T 

Observe the column under PQ , there are three 1’s in the column. 

The 1’s are in 1st row, 3rd row and forth row only.  

Consider the 1st row. In this first row P & Q have truth values 1 and 1 respectively. So the 

related product term is PQ (or 11). 

 Consider the 3rd row. In the third row, the truth values of P and Q are 0 and 1 respectively.  

 So the related product term is P .Q (or 01).  

Consider the 4th row. In this forth row, the truth values of P and Q are 0 and 0 respectively. 

So the related product term is P Q (or 00). 

The sum of these three terms, that is “11v 01v 00” is the PDNF. 

 So the required PDNF is PQ  P Q  P Q   ( in detail      P Q P Q P Q     ). 

3.2.12. Example:  Find PDNF for the given statement  X Y  (by Black Box Method) 

 (Compare this problem with example 1.6.8) 

Solution: First we form truth table for the given statement  X Y . 

X Y X  ∨X Y  

0 0 1 1 

0 1 1 1 

1 0 0 0 

1 1 0 1 

Truth table for  X Y
 

P Q 
P  

Q 

1 1 1 

1 0 0 

0 1 1 

0 0 1 
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 Observe the column for  X Y . There are three 1‘s  in first row, second row and forth 

row. 

The product term related to row–1 is X Y . 

Consider row–2.  The product term related to this row–2 is X Y  (because the truth values of x 

and y are 0 and 1 respectively). 

Consider row–4.  The product term related to row–4 is X Y (because the truth values of x and 

y are 1 and 1 respectively) 

 Therefore the PDNF is 

   X Y  X Y  X Y    or      X Y X Y X Y      

3.2.13.    Principal Conjunctive Normal Form (PCNF) 

For a given statement formula, an equivalent formula consisting of the conjunction (product) 

of maxterms is known as the Principal Conjunctive Normal Form (PCNF) (or product of 

sums canonical form). 

To find PCNF (by using truth table or through PDNF) of the given statement formula p. 

Step 1: Suppose the given statement formula is p. 

Step 2: Find the complement (that is the negation) of p. 

Step 3: Find the PDNF for the complement of p (we may use black box method or some other 

method) 

Step 4: Required PCNF of p =  complement of (PDNF of (complement of p))  

                                         =   ~ (PDNF(~ p )). 

3.2.14. Example:   Find the PCNF of the given statement formula   F  = X Y . 

Solution:  We follow the method given in 3.2.13. 

 

Step 1: The given statement formula is  

    F X Y   

Step 2: Now we have to find F   (the complement (or the negation) of F). 

 

~ F  =  ~ ( X Y )  =  ( ~ X)   Y. 

 

 Step 3: In this step we find the PDNF for F X Y   

 

X Y X  X Y  

0 0 1 1 
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0 1 1 1 

1 0 0 0 

1 1 0 1 

Truth table for  X Y  

 As in the above example 3.2.11, we get that  

PDNF of        F X Y X Y X Y       

Step 4:      PCNF F PDNF F  

       X Y X Y X Y       

       X Y X Y X Y       

                                                (by demorgan laws) 

       X Y X Y X Y       

                                             X Y X Y     

                              (since A A A  , called as idempotent law). 

3.2.15. Example 

Show that the principal conjunctive normal form (PCNF) of the formula 

     p q r p q r             is π (1, 2, 3, 4, 5, 6) (Here we use standard notation π for 

product). 

Solution: Given formula is 

     p q r p q r             

     p q r p q r              [Since pq  ~pq] 

     p q r p q r              [Since pq  ~pq] 

         p q p r p q p r                [By Demorgan laws] 

         p q r r p r q q p q r r p r q q                               

                                            [since x  (~ x) = o, and  x   o = x] 

                       p q r p q r p r q p r q p q r p q r                   

                                 p r q p r q       

             p q r p q r p q r p q r p q r p q r                  is the 

principal conjunctive normal form of given statement formula. 
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Now by the known representation, we have 

1. Can be represented as p q r  (001) 

2. Can be represented as p q r  (010) 

3. Can be represented as p q r  (011) 

4. Can be represented as p q r  (100) 

5. Can be represented as p q r  (101) 

6. Can be represented as p q r  (110).   

In Binary notation,  001 stands for 1 (because if  xyz is a binary form, then  the equivalent  

number (with respect to 10) is  [(x multiplied by 4) + ( y multiplied by 2) + (z multiplied by 1 

)]. 

For binary number 010, is equal to 2;  011 is equal to 3; 100 is equal to 4;  101 is equal to 5; 

110 is equal to 6.    

 Therefore, the principal conjunctive normal form of the given formula can be represented 

as π (1, 2, 3, 4, 5, 6). 

 The Solution is complete. 

 

3.3  SUMMARY:   
 

In this lesson, we studied some important forms of statement formulas namely Disjunctive 

Normal form (DNF), Conjunctive Normal form (CNF), Principal  Disjunctive Normal form 

(PDNF),  Principal  Conjunctive Normal form (PCNF).We included sufficient number of 

examples for the training of the readers.    

 

3.4  TECHNICAL TERMS: 
 

Disjunctive Normal Form (DNF):   

A statement formula which is equivalent to a given statement formula and which is of the 

form “a sum of elementary products” is called as Disjunctive Normal Form (DNF) of the 

given statement formula. 
 

Conjunctive Normal Form (in short, CNF): 

A statement formula which is equivalent to a given statement formula and which is of the 

form “a product of elementary sums” is called as Conjunctive Normal Form (CNF) of the 

given statement formula. 

 

Principal Disjunctive Normal Form (in short, PDNF): 

For a given statement formula, an equivalent statement formula which is in the form  

“disjunction (or sum or join) of minterms” is known as its Principal Disjunctive Normal Form 

(PDNF) (or sum of products canonical form). 

 

 Principal Conjunctive Normal Form (in short, PCNF): 

For a given statement formula, an equivalent formula consisting of the conjunction (product) 

of maxterms is known as the Principal Conjunctive Normal Form (PCNF) (or product of 

sums canonical form). 
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3.5  SELF ASSESSMENT QUESTIONS: 

 

(i).    Find the principal conjunctive normal Form of the statement formula  ~ p q
 
 . 

          [ Ans:       ~ p q ~ p q p q      ]     

(ii).   Find the principal conjunctive normal Form of the statement formula  ~ p q  

 .   [ Ans:      p ~ q ~ p q ~ p ~ q      ] of     

 

3.6  SUGGESTED READINGS:  

 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 

Theory, Prentice Hall India Ltd, New Delhi,  2014 (second edition) ISBN-978-81-

203-4948-3. 

 

2.  James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 

1977. 

 

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-

9780367367237 . 

 

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  

 

 

Prof. Dr. Bhavanari Satyanarayana 



 

 

 LESSON- 4  

THEORY OF INFERENCE, AND PREDICATE 

LOGIC 
 

OBJECTIVE: 

 

 To know the concept Inference Theory. 

 To understand the Meaning of  Predicate, 2-place predicate. 

 To identify different types of Predicates 

 To have proper understanding of different connectives.   

 To develop skills in solving the problems 

 To Learn the consistency, validity of the statements.  

 

STRUCTURE 

4.1    Introduction  

4.2.   Theory of Inference for Statement Calculus.  

4.3.   Consistency of premises and indirect method of proof 

4.4    Predicate. 

4.5    m-place Predicate. 

4.6    Connectives 

4.7    Statement Functions, and Variables 

4.8    Summary 

4.9    Technical Terms 

4.10  Self Assessment Questions 

4.11  Suggested Readings 

 

4.1   INTRODUCTION:    

 

In Lessons 1,2 and 3, we studied atomic statements and statement formulas.  In this Lesson, 

we study: Theory of Inference for Statement Calculus;  Consistency of premises and indirect 

method of proof;  Predicates;   m-place Predicates; and   Connectives, Statement Functions, 

and Variables.   In the inference theory, all the premises and conclusions are statements. If 

any two statements have common feature, then we are unable to express the common feature. 

In order to study the common feature statements, the concept “predicate” is useful. The logic 

related to the analysis of predicates is called as predicate logic.  

  

4.2.  THEORY OF INFERENCE FOR STATEMENT CALCULUS: 

 

Logic gives the rules of inference, or principles of reasoning. The theory deal with these rules 

is called as inference theory. This theory is concerned with the inferring of a a statement 

(called as conclusion) from the given hypothesis (or certain statements, called as premises) 

 The process of deriving the conclusion from the set of given statements (or premises) by 

using the accepted rules, and known results, is known as deduction or a formal proof.  In the 

formal proof, at any stage, the rule of inference used in the derivation may be acknowledged.  

 The conclusion obtained by using the rules of inference is named as Valid Conclusion; and 

the argument involved is named as Valid Argument. 
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4.2.1.   Tautology  
   

If  A and B are two statement formulas, then we say that “B logically follows from A”  

(or “B is a valid conclusion (or consequence) of the premise A”) if and only if AB is a 

tautology (that is, AB). 

4.2.2.   Validity using truth table 

Let m, n be positive integers.  Suppose P1, P2, ..., Pn are n variables appearing in the m  

premises H1, H2, ..., Hm and in the conclusion C.  

Suppose that all the possible combinations of truth values are assigned to P1, P2, ..., Pn and 

also suppose that the truth values of H1, H2, ..., Hm and C are entered in the truth table.  

We say that C follows logically from the premises H1, H2, ..., Hm if and only if  

H1 H2  ... Hm C.  

This can be checked from the truth table using the following procedure: 

1. Observe the rows in which C has the truth value F. 

2. In every such row (that is the row for which the value under C is F) if at least one of the 

values of H1, H2, ..., Hm is F then the conclusion is valid. 

4.2.3. Example:  Show that the conclusion C:   ~P follows from the premises 

 H1: ~ P  Q, H2: ~ (Q  ~ R) and H3: ~ R. 

Solution: Given Conclusion and premises are  C: ~ P,  H1: ~ P  Q,  H2: ~ (Q  ~ R)   

and H3: ~ R.  

P Q R H1 H2 H3 C 

1 1 1 1 1 0 0 

1 1 0 1 0 1 0 

1 0 1 0 1 0 0 

1 0 0 0 1 1 0 

0 1 1 1 1 0 1 

0 1 0 1 0 1 1 

0 0 1 1 1 0 1 

0 0 0 1 1 1 1 

The rows (1, 2, 3, and 4) in which C has the truth values 0 (that is, F) has the situation that at 

least one of H1, H2, H3 has truth value F. Thus C logically follows form the premises H1, H2, 

and H3. 

 



 

Advanced Discrete Mathematics                         4.3                             Theory of Inference…              

4.2.4. Rules of Inference 

In the following, we mention the three rules of inference. 

Rule P: A premise may be introduced at any point in the derivation. 

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by any 

one or more of the preceding formulas in the derivation. 

Rule CP: If we can derive S and R and a set of premises then we can derive R  S from the 

set of premises alone. 

4.2.5.   Some Implications were listed in the following: 

  I1 : p  q  p 

  I2 : p  q  q 

  I3 : p  p  q 

  I4 : q  p  q 

  I5 : p p q   

  I6 : q  p  q 

  I7 : p q p    

  I8 : p q q      

  I9 : p, q  p  q 

  I10 : p,  p q q    [disjunctive syllogism] 

  I11 : p, p  q  q  [modus ponens] 

  I12 : q,  p q p    [modus tollens] 

  I13 : p  q , q  r  p  q [hypothetical syllogism] 

  I14 : p  q, p  r, q  r  r [dilemma] 

4.2.6. Some Equivalences 

  E1 : p p  [double negation] 

  E2 : p  q  q  p 

  E3 : p  q  q  p 

  E4 : (p  q)  r  p  (q  r) 

  E5 : (p  q)  r  p  (q  r) 

  E6 : p  (q  r)  (p  q)  (p  r) 

  E7 : p  (q  r)  (p  q)  (p  r) 

  E8 : p q p q    

  E9 : p q p q    

  E10 : p  p   p  

  E11 : p  p  p 

  E12 :  r p p r     

  E13 :  r p p r    

(Simplification) 

(addition) 
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  E14 :  r p p T    

  E15 :  r p p F    

  E16 : p q p q    

  E17 : p q p q    

  E18 : p q q p    

  E19 :    p q r p q r      

4.2.7. Example:    Prove that r  (p  q) is a valid conclusion from the given 

 premises p  q,  q  r, p  m and m . 

Solution:  The given four premises (P) are p  q, q  r, p  m and m . 

  {1}  (1) p  m  Rule P 

  {2}  (2) m    Rule P 

  {1,2}  (3) p    Rule T, (1), (2) and I12. 

  {4}  (4) p  q  Rule P 

  {1,2,4}  (5) q   Rule T, (3), (4) and I10. 

  {6}  (6) q  r  Rule P 

  {1,2,4,6} (7) r   T, (5), (6) and I11. 

  {1,2,4,6} (8) r  (p  q)  T, (4), (7) and I9. 

We arrived to the conclusion that  r  (p  q). 

4.2.8. Example:  Show that the conclusion C: ~ P follows from the premises 

  H1: ~ P  Q, H2: ~ (Q  ~ R) and H3: ~ R. 

Solution: We get 

    (1) ~ R   Rule P (assumed premise) 

    (2) ~ (Q  ~ R)  Rule P 

  {2}  (3) ~ Q  R  Rule T 

  {3}  (4) R  ~ Q  Rule T 

  {4}  (5) ~ R  ~ Q  Rule T 

  {1, 5}  (6) ~ Q   Rule T 

    (7) ~ P  Q  Rule P 

  {7}  (8) ~ Q  ~ P  Rule T 
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  {6, 8}  (9) ~ P   Rule T 

 Hence C logically follows from H1, H2 and H3. 

4.2.9. Example:  Prove or disprove the conclusion given under from the following axioms. 

 “If Socrates is a man, Socrates is mortal”.  Socrates is a man.   

Therefore Socrates is mortal. 

 

Solution:  The argument is valid because the argument follows the pattern of Modus ponens. 

 Consider the argument 

  p: Socrates is a man. 

  q: Socrates is mortal. 

  p  q: If Socrates is a man, then Socrates is mortal. 

 The modus ponens is 

  

p q

p

q




 

 Hence the conclusion   q : “Socrates is mortal” is true. 

 

4.3.  CONSISTENCY OF PREMISES AND INDIRECT METHOD OF PROOF: 

 

A set of m  statement formulas H1, H2, ...Hm is called as consistent if the conjunction  

(H1, H2...Hm) has truth value “T”  (or 1) for some assignment of the truth values to the 

atomic variables appearing in the statement formulas H1, H2, ...Hm.  In other words, in the 

truth table, there exist at least one 1 under the column for (H1, H2...Hm). 

 

 If H1, H2...Hm is false for every assignment of the truth values of the automic variables 

(that is  (H1, H2...Hm) is a contradiction) appearing in the statement formulas H1, H2, 

...Hm then we say that H1, H2, ...Hm are inconsistent.  

We may also say that a set of formulas H1, H2, ...Hm are inconsistent if their conjunction 

 (H1, H2...Hm) implies a contradiction, that is, 

  H1, H2...Hm  R R  

where R is any statement formula. Note that R R  is a contradiction for any formula R. 

We use this concept a procedure called “proof by contradiction” (or indirect method of 

proof). 

4.3.1.  Indirect Method of Proof 

In order to prove that a conclusion C follows logically from the given statements (that is,  

premises) H1, H2, ..., Hm , we assume that C is FALSE and consider ~C as an additional 

premise.  If H1  H2  ...  Hm ~C is a contradiction, then we conclude logically that “C 

follows logically from the premises H1, H2, ..., Hm.”. 
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4.3.2. Example   Show that ~ (P  Q) follows from ~ P  ~ Q. 

Solution:   For this problem, the conclusion is  ~ (P  Q).  We have to consider the negation 

of this conclusion as an additional premise. 

So we assume that  ~ (~ (P  Q)) as an additional premise. Then 

    (1) ~ (~ (P  Q)) Rule P 

  {1}  (2) P  Q  Rule T 

    (3) P   Rule T 

    (4) ~ P  ~ Q  Rule P 

  {4}  (5) ~ P   Rule T 

  {3, 5}  (6) P  ~ P  Rule T 

 We know that  P  ~ P is a contradiction. Hence by the indirect method of proof ~(P  Q) 

follows logically from ~ P  ~ Q. 

4.3.3. Example:   

“If there was a party, then catching the train was difficult. If they arrived on time then 

catching the train was not difficult. They arrived on time. Therefore there was no party.” 

Show that the statement constitutes a valid argument. 

Solution:  Suppose that   

                          p: There was a party 

   q: Catching the train was difficult. 

   r: They arrived on time. 

 Here, the conclusion is “there was no party” (that is, p ).  

So we have to prove that p  follows from the premises p  q, r q  and r. 

    (1) r   Rule P 

    (2) r q   Rule P 

  {1, 2}  (3) q    Rule T 

    (4) p  q  Rule P 

  {4}  (5) q p   Rule T 

  {3, 5}  (6) p    Rule T 

4.3.4  Example: 

Using indirect method (or proof by contradiction) show that 2 is not a rational number. 

Solution: The conclusion is that  p: “ 2 is not a rational number”. 
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We have to consider  not p, that is “7p : 2 is a rational number”. 

So suppose that  2  is a rational number. 

Since 2 is a rational number, we have that 
a

2
b

  where a, b are two integers with  gcd (a, 

b) = 1 and b  0. 

Squaring on both sides, we get   
22

2

a
2

b
  

   
2

2

a
2

b
   

   2 22b a              …..(1) 

[2 divides the left hand side, and so the right hand side also]    

22 divides a  

   2 divides a             …..(2) 

   a 2k   for some integer k 

   2 2a 4k              …..(3) 

 By (1) & (3) we get 2 22b 4k  

   2 22b 4k   

   2 2b 2k   

  2 divides b             …..(4) 

 Now 2 divides ‘a’ and ‘b’ [from (2), (4)] 

 This is a contradiction to the fact gcd (a, b) = 1. 

 Hence the conclusion is true (that is 2  is not a rational number). 

4.3.5. Example: 

Prove that the following set of premises are not inconsistent (that is, consistent). 

  p q, q  r, ~ (p  r), p v r  r 

Solution: We have to prove that the given set of premises (four statements: 

 p q, q  r, ~ (p  r), p v r  r ) is not inconsistent.  

This is equal to say that the meet () (or the product) of all these four premises has truth 

value T in at least one case. 

Consider the case when (p, q, r) = (F, T, T).  That is, the truth values of p, q, r are equal to F, 

T, T respectively.  In this case, the truth values of p q, q  r, ~ (p  r) and  p v r  r are all 

equal to T.  Hence the product (that is, meet) of all the four premises also have truth value T.  

This says that the set of four premises is consistant.  The proof is complete. 

Hence the given set of premises p q, q  r, ~ (p  r),  p v r  r will not form a set of 

inconsistent formula. 
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4.4 PREDICATE LOGIC: 

Logic that deals with predicates is named as Predicate Logic. 

4.4.1 Predicate 

In the statement “Satya is beautiful”, the part “is beautiful” is called a predicate. The part 

“Satya” is a noun or subject or object.  Every predicate describes some property of one or 

more objects.  

In symbolizing the statements, in general, we use capital letters for predicates, and small 

letters for individuals or objects. 

Let us consider the following two atomic statements: 

1. Satya is beautiful. 

2. Lakshmi is beautiful. 

 If we express these two statements by symbols, we need to have two different symbols.  

We introduce some symbol to denote “is beautiful”.  Also a method to join it with symbols 

that denotes the names of individuals. 

4.4.2. Examples:  

 (i).  Consider the statements: 

1. Satya is beautiful. 

2. Lakshmi is beautiful. 

 We denote the predicate “is beautiful” by the capital letter B ( here, B first letter of the 

word (predicate) beautiful).  We use symbol  “s” for “satya”  and  “l”  for “Lakshmi”. 

In symbolic form, the statements (1) and (2) will be written as  B(s) and B(l) respectively. 

In general,  any statement of the form “p is Q” where Q is the predicate and p is noun (or 

subject) is denoted by Q (p). 

Thus  B(s) denotes the statement “Satya is beautiful”. 

B(l) denotes the statement  “Lakshmi is beautiful”. 

 

(ii).  Consider the statements: 

1. Mallikarjun is a student. 

2. Gnyana is a student. 

Observe the given statements.  The predicate involved in these statements I “is a student”. 

We denote this predicate “is a student” by the capital letter “S”, and the nouns (or subjects) 

Mallikarjun by small letter “m” and Gnyana by the small letter “g”. 

Now S(m) means “m is S” (that is, Mallikarjun is a student);  S(g) means “Gnyana is a 

student”. 

4.4.3.  2–place predicate  

In the Example 4.4.2, we considered the atomic statement “Mallikarjun is a student”. Here 

the predicate “is a student” have one  and only one noun (or subject) namely “Mallikarjun”. 

So it is named as 1–place predicate. 

 Now consider the statement “Mallikarjun is taller than Gnyana”.  In this statement,  “is 

taller than” is a predicate and it deals with two names (or nouns or individuals). This  
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predicate is called as 2–place predicate.   

A predicate associated with two names (or nouns) is called as 2–place predicate. 

In symbolic form we write T(m, g) where T denotes the predicate “is taller than”, m denotes 

Mallikarjun, and g denotes Gnyana.   

4.4.4.  Example:    

Consider the following atomic statement: 

 Andhra Pradesh is to the north of Tamilnadu. 

In the given statement,  “is to the north of” is the predicate, we denoted by the capital letter 

“N”.  

We denote Andhra Pradesh is by “a”, and the Tamilnadu is denoted by “t”. 

So N(a, t) means “Andhra Pradesh is to the north of Tamilnadu”. 

Thus this predicate is a 2–place predicate. 

 

4.5.   m-PLACE PREDICATE: 

A predicate associated with m names (or nouns) (where m is a positive integer) is called an 

m–place predicate. In order to extent this definition to m = 0, we say that a predicate is a 0–

place predicate if no names are associated with the predicate. 

 

4.5.1.  Example:    

Consider the following statement: “Satya sits between Mallikarjun and Gnyana”.  

In the given statement, “Sits between” is the predicate, we denote this predicate by B.  

We denote Satya, Mallikarjun and Gnyana by s, m, g respectively. Then B(s, m, g) denotes 

the given statement.  In the given statement, the predicate is associated with three names (or 

individuals).  Hence this predicate is a 3–place predicate. 

 

4.6.  CONNECTIVES: 
 

The known connectives (,, 7)  that were used in statement logic, can be used to form 

compound statements. 

  “Satya is beautiful” and “Lakshmi is beautiful”. 

  “Satya is beautiful” or “Lakshmi is beautiful”. 

 These sentences  were were represented by 

  B(s)  B(l) 

  B(s)  B(l) 

  “The painting is Red” is denoted by R(p). 

  “The painting is not Red” is denoted by R(p)  or  ~R(p)  or  R(p)  

4.6.1.  Example:    

Represent the statement “Rama is handsome and Sita is beautiful” by predicate logic. 

Solution: Suppose  “H” denotes the predicate “is handsome”;  and “B” denotes the predicate  
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“is beautiful”.  Suppose the symbols  “r” and “s” denotes the subjects Rama and Sita, 

respectively. 

Then H(r) denotes the statement “Rama is handsome”, and   B(s) denotes “Sita is beautiful”. 

So H(r)  B(s) denotes the statement “Rama is handsome and Sita is beautiful”. 

In terms of predicate logic, the given statement is represented by 

  H(r)  B(s). 

 

4.7.  STATEMENT FUNCTIONS, AND VARIABLES: 

 

An expression consisting of a predicate symbol and an individual variable is said to be a 

simple statement function of one variable. 

Such a statement function becomes a statement when the variable is replaced by the name of 

the object. 

As an illustration,  take the predicate B (“is beautiful”) and “s” (the name Satya). As we 

know,  B(s) means “s is beautiful” (that is, Satya is beautiful). 

In place of Satya let us use a variable x. We write B(x), the notation for “x is beautiful”. In 

place of x we may substitute “Lakshmi” (or l), then we get B(l) which means “Lakshmi is 

beautiful”. Now we consider B(x) as a statement and x is a place holder (or variable) B(x) is a 

statement function. 

4.7.1. Example 

In the statement function (here a 2-place predicate) T(x, y) (means x is taller than y),  where 

T denotes the predicate “is taller than”,  x and y are place holders in the 2–place predicate 

T(x, y). 

If we replace, x by Mallikarjun, and y by Gnyana then T (m, g) denotes the statement. 

 Mallikarjun is taller than Gnyana. 

Note that T(x, y) is a statement function and x, y are variables. 

4.7.2. Note 

Let B be the predicate “is beautiful”. 

Consider the following three statements. 

  B(s): Satya is beautiful. 

  B(g): Gnyana is beautiful. 

  B(l): Lakshmi is beautiful. 

Here B(s), B(g), B(l) all denote statements, but they have common form (feature, beautiful).  

  

If we write B(x) for “x is beautiful”, then B(s), B(g), B(l) and others with same form can be 

obtained from B(x) by replacing x by the suitable name s, g, l, …  

We note that B(x) is not a statement but it result in many statements when we replace the 

variable x by appropriate names (or subjects or nouns). 
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4.7.3.  Combined Statements  and  Connectives: 

Consider the given two statement functions in one variable x. 

  B(x): x is beautiful. 

  M(x): x is mortal. 

Now 

  B(x)  M(x) denotes “x is beautiful and x is mortal”. 

  B(x)  M(x) denotes “x is beautiful or x is mortal”. 

  7B(x) (or B(x) ) denotes “x” is not beautiful”. 

Suppose  T(x, y) denotes “x” is taller than y” .   

This is a predicate in two variables x and y.    

Then T(x, y) (or T(x,y) ) denotes that “x” is not taller than y”. 

4.7.4.  Example:    

Construct the statement function in predicate calculus for the given statement “x” is rich and 

y is tall”. 

Solution: We know that  “x is rich” is denoted by R(x); and “y is tall” is denoted by T(y). 

 So  “R(x)  T(y)” denotes the statement “x is rich and y is tall”, where R and T are 

predicates “is rich” and “is tall” respectively; and x and y are variables. 

 

4.8  SUMMARY: 

 

In Lessons 1,2 and 3, we studied atomic statements and statement formulas.  In this Lesson, 

we studied: Theory of Inference for Statement Calculus;  Consistency of premises and 

indirect method of proof;  Predicates;   m-place Predicates; and   Connectives, Statement 

Functions, and Variables.   In the inference theory, all the premises and conclusions are 

statements. If any two statements have common feature, then we are unable to express the 

common feature. In order to study the common feature statements, the concept “predicate” is 

useful. The logic related to the analysis of predicates is called as predicate logic.  

 

In this Lesson, we also studied the concepts: 2-place predicate, m-place predicate.  A 

predicate associated with m names (or nouns) (where m is a positive integer) is called as m–

place predicate.  Some examples related to 2-place predicate, and 3-place predicate were 

included.  Connectives used in predicate logic were introduced and explained in detail for the 

better understanding of the reader.  Statement functions and variables in predicate logic were 

explained.   

 

4.9  TECHNICAL TERMS:   

Predicate 

[In the statement “Satya is beautiful”, the part “is beautiful” is called a predicate]. 

 

Predicate Logic 

[Logic that deals with predicates is named as Predicate Logic]. 
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2- place predicate 

[A predicate associated with two names (or nouns) is called as 2–place predicate]. 

 

3-place predicate 

[A predicate associated with three  names (or nouns) is called as 3–place predicate]. 

 

m-place predicate 

[A predicate associated with m names (or nouns) (where m is a positive integer) is called 

as m–place predicate]. 
 

Simple statement function of one variable. 

[An expression consisting of a predicate symbol and an individual variable is said to be a 

simple statement function of one variable]. 

 

4.10  SELF ASSESSMENT QUESTIONS: 

 

(i).   Show that the following set of premises is inconsistent. 

       p q r ,s q ~ r ,p s      

 

(ii).    Prove that S  R is tautologically implied by (P  Q), (P  R),  ( Q  S). 
 

(iii).   Represent the statement “Rama is  King” by predicate logic. 

 

[Ans:  K(r) represents the given statement.   Here K denotes “is a king”, and r denotes Rama]. 

 (iv).  Represent the statement “Rama is a brother of Lakhmana” by predicate logic. 

 

[Ans:  B(r,l), where B denotes the predicate “a brother of”, r,l denotes Rama, Lkhmana, 

repectively]. 

 

(v).  Represent the statement “Rama is  boy and Sita is girl” by predicate logic. 

 [Ans:  B(r)  G(s), where B and G are predicates “is a boy”, and “is a girl” respectively]. 

 

(vi).   Represent the statement “Rama is standing between Bhima and Krishna” by predicate 

logic. 

 

[Ans:   S(r,b,k) where S denotes the predicate “is standing between”,  r, b, k denotes the 

nouns Rama, Bhima, Krishna respectively]. 

(vii).   Represent the statement “Rama is sitting between Bhima and Krishna” by predicate 

logic. 

 

[Ans:   S(r,b,k) where S denotes the predicate “is sitting between”,  r, b, k denotes the nouns 

Rama, Bhima, Krishna respectively]. 
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LESSON - 5 

QUANTIFIERS 
 
 
OBJECTIVE: 
 
 To know the concept Quantifier.   
 To identify different types of Quantifiers. 
 To Learn the validity of the Statements  
 To have proper understanding of different Quantifiers. 
 To develop skills in solving the problems. 

 
STRUCTURE: 

5.1   Introduction 
5.2  Quantifier 
5.3   The Universe of discourse 
5.4   Free and bounded variables 
5.5   Summary  
5.6   Technical Terms 
5.7   Self Assessment Questions 
5.8   Suggested Readings 
 
5.1   INTRODUCTION:   
  
 In the previous Lessons, we discussed regarding the Statements, connectives, 
tautology, contradiction,  truth tables, etc.  In this Lesson we added some more knowledge by 
presenting  new concept “Quantifier”.  In this lesson finally we presented the concepts:  free 
variable and bounded variable.  We included some examples that are needed to understand 
the new concepts.   

5.2.   QUANTIFIERS: 

 We know about the atomic statements and predicates. In this Lesson, we introduce the 
notion quantifiers ( “all” and “some”). These concepts provide some extension to the earlier 
knowledge. The word “all” is said to be “universal quantifier”; and the word “some” is said 
to be  “existential quantifier”.  We use the words “all” and “some” in several sentences such 
as “All men are mortal”,  “Some men are not professors”.  

5.2.1.  Universal Quantifier 

The quantifier  “all” (which is the universal quantifier) is denoted by (x) or x 

 We place this symbol just before the statement function. For example, consider the 
statement functions: 

   B(x): x is beautiful 

  W(x): x is a woman 

 Then (x) (W(x)  B(x)) denotes “for all x, if x is a women then x is beautiful”(In other 
words, All women are beautiful). 
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Now we can understand that the statement “for all x, if x is a women then x is beautiful” (In 
other words, All women are beautiful) is denoted by “(x) (W(x)  B(x))”. 
   

 Also we have to note that x is arbitrary.  In place of the variable, we may use any other 
variable such as y or z. We get the same meaning.   

So  (x) (W(x)  B(x); and (y) (W(y)  B(y)) are having equivalent meaning (because x, y 
are just variables) (x) (W(x)  B(x)) may be denoted by x (W(x)  B(x)). 

5.2.2.  Example:   

Represent the statement  “For any x and for any y, if x is richer than y, then x is not poorer 
than y” by predicate logic. 

Solution:  Consider the following 2–place predicates (two in number): 

  R(x, y):  x is richer than y. 

  P(y, x):   y is poorer than x. 

From the second statement we get that “P(x, y):  x is not poorer than y”. 

Now we got the third statement. 

  P(x, y):  x is not poorer than y. 

By using the Universal quantifiers   (x) and (y), we can write the forth statement:   
 “(x)(y) (R(x, y)  P(x, y))”. 

This forth statement means that 

  “For any x and for any y, if x is richer than y, then x is not poorer than y”. 
 

This statement may also be denote as follows: 

  x y (R(x, y)  P(x, y)).  

Note that in the above, we obtained representation of the statement “For any x and for any y, 
if x is richer than y, then x is not poorer than y” in terms of  predicate logic. 
 

5.2.3.  Existential Quantifier 

We know that the word “some” is called as the existential quantifier.  This existential 
quantifier  is denoted by “”.  This also have the meaning  “for some” or “there exists at least 
one”. 

If we write  “x” , this have the meaning  “for some x” or “there exists at least one x”. 

The symbol  x (or  unique x) is used for “there is a unique x”, or “there exists unique x”). 

As in case of for all,  we place this symbol also, just before the statement functions. 
  

5.2.4.  Example: 

Consider the following five statement functions: 

  M(x): x is a man, where M denotes the predicate “is a man”. 

  C(x): x is clever, where C denotes the predicate “is clever”. 

  I(x): x is an integer, where I denotes the predicate “is an integer”. 
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   E(x): x is even, where E is the predicate “is even”. 

  P(x): x is prime, where P is the predicate “is prime”. 

 Then 

   x M(x) symbolizes “There exists a man” 

   x (M(x)  C(x)) symbolizes “There are some men who are clever” 

   x (I(x)  E(x)) symbolizes “Some integers are even” or “There are some integers 

which are even” 

  x (E(x)  P(x)) symbolizes “There exists unique even number which is a prime 

number”. 

5.2.5. Example: 

Represent the statement  “There is a man who is clever” by predicate logic. 

Solution:   Consider the two statements given below; 

M(x): x is a man, where M denotes the predicate “is a man”. 

C(x): x is clever, where C denotes the predicate “is clever”. 

M(x)  C(x) represents “x is a man, and x is clever”. 

Therefore   x (M(x)  C(x)) is the symbolic form of the statement “There is a man who is 
clever” 
 

5.2.6. Example: 

Represent the statement  “there is only one prime number which is also an even number” by 
predicate logic. 

Solution:   Consider the two statements given below; 

 P(x): x is a prime number, where P is the predicate “is aprime number”. 

. 

 E(x): x is an even number, where E is the predicate “is an even number”. 

. 

 (E(x)  P(x)) symbolizes “There exists a prime number which is an even number”. 

x (E(x)  P(x)) symbolizes “There exists unique (or only one) prime number which is also 
an even number”. 

  
5.3   THE UNIVERSE OF DISCOURSE: 
 

Variables that were quantified may belong to certain sets.  

That particular set is called as the universe of discourse or the domain or simply universe. 

In the statement “M(x) :  x is a man”, the variable x relates to the set of all men.  Here the set 
of all men is the universe of discourse.   

In the statement “E(x) : x is an even number”,  then x relates to all the even numbers.  Here 
the universe is the set of integers. 
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So, the universe may be, the class of human beings, or numbers (real, complex, and rational) 
or some other objects. The truth value of a statement function containing quantifier depends 
upon the universe. 

5.3.1.  Example 

Suppose Q(x) is the predicate that 

 Q(x): x is less than 10. 

Consider the statements (x) Q(x) and  x Q(x). 

Let us define the sets U1, U2 and U3 as follows: 

   U1: {–1, 0, 1, 2, 4, 6, 8}; 

   U2: {3, –2, 12, 14, 10} and 

   U3: {10, 20, 30, 40}. 

By considering different cases, let us observe whether the statements are true / false with 
respect to  U1, U2 and U3 ,treating as universes. 

(i) The statement (x) Q(x) is true in U1 because the statement function  Q(x) 

 [that is, x < 10] is true for every x in U1.  In this case  (x) Q(x)  is True. 

(ii) The statement (x) Q(x) is not true in U2 [because there is the element 12 in U2 such that 

12 is not less than 10].  Hence, in this case (x) Q(x) is False. 

(iii) The statement (x) Q(x) is not true in U3., because 20 is not less than 10. 

(iv) The statement “ x Q(x)” is true in U1 and U2 [because there exist atleast one element 

in U1 (also in U2) which is less than 10]. 

(v) The statement “ x Q(x)” is not true (that is, false) in U3 [because there is no element in 

U3 which is less than 10]. 

5.3.2. Example 

Suppose that  “the set of integers” is the universe of discourse. 

Determine the truth values of the following sentences: 

1. (x) (x2  0) 

2. (x) (x2–5x + 6 = 0) 

3. (x) (x2–5x + 6 = 0) 

4. (y) ( x (x2 = y)) 
 

Solution: 1. For any integer x, we know that  x2  0.  Hence the statement  (x) (x2  0) is true  
when “the set of integers” is the universe of discourse. 

 

2.  Consider the integer 1.  If we substitute  x = 1, then  x2–5x + 6 = 2 which is not equals to  
0.   So the statement  x2–5x + 6 = 0 is not true with x = 1.   

Hence the given statement (x) (x2–5x + 6 = 0) is not true if we consider “the set of integers” 
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as universe of discourse. 
 

3.   Consider the integer 2.  If we substitute  x = 2, then  x2–5x + 6 = 0.   So the statement  x2–
5x + 6 = 0 is true with x = 2, and 2 is an integer.   

Hence the given statement (x) (x2–5x + 6 = 0) is true if we consider “the set of integers” as 
universe of discourse. 
 

4.  Consider the integer y = 2.  We know that there is no integer x such that x2 = y. 

So the statement  x2 = y  is not true if  y = 2 and x is an integer. 

Hence the given statement  (y) ( x (x2 = y)) is not true if we consider “the set of integers” as 
the universe of discourse. 
 
5.3.3.  Example: 

Find out the quantifiers for the following statements where predicate symbols denote. 

  K(x): x is two-wheeler 

  L(x): x is a scooter 

  M(x): x is manufactured by Bajaj 

(a) Every two wheeler is a scooter. 

(b) There is a two wheeler that is not manufactured by Bajaj. 

(c) There is no two wheeler manufactured by Bajaj that is not a scooter. 

(d) Every two wheeler that is a scooter is manufactured by Bajaj. 

 

Solution: Given that 

  K(x): x is a two-wheeler 

  L(x): x is a scooter 

  M(x): x is manufactured by Bajaj 

(a).   We have to find out quantifier for the statement: 

 “Every two wheeler is a scooter”. 

The expression (K (x)  L(x)) denotes the statement that “two wheeler is a scooter”. 

Therefore  

   (x) (K (x)  L(x)) 

represents  the expression that  “Every two wheeler is a scooter”. 

 

(b).   We have to find out the quantifier for the statement: 

 “There is a two wheeler that is not manufactured by Bajaj”.  

The expression 7M(x) denotes the statement that “x in not manufactured by Bajaj”. 

The expression K(x)  7M(x) denotes the statement that “x is a two wheeler and not 
manufactured by Bajaj”. 

Hence “x (K(x)  7M(x))” is the expression that states that “there exists x which is a two 
wheeler and not manufactured by Bajaj”. 
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(c).    We have to find out the quantifier for the statement 

“There is no two wheeler manufactured by Bajaj that is not a scooter”. 

The expression “ L (x)” denotes the statement that “x is not a scooter”. 

The expression “K(x)  M(x)  L (x)” denotes the statement that “x is a two wheeler 

manufactured by Bajaj that is not a scooter”. 

Therefore the quantifier expression   (x (K(x)  M(x)  7 L(x)) denotes the statement that 

“There is no two wheeler manufactured by Bajaj that is not a scooter”. 

(d).  We have to find out the quantifier for the statement “Every two wheeler that is a scooter 
is manufactured by Bajaj”.   

The expression “K(x)  L(x)” denotes the statement that “x is a two wheeler that is a 
scooter”.  

So the expression (x) ((K(x)  L(x)  M(x)) denotes the statement that “Every two wheeler 
that is a scooter is manufactured by Bajaj”.   
 
5.4  FREE AND BOUNDED VARIABLES: 
 

Suppose that (x) p(x) or  x p(x) is a part of a given formula. Such a part of the form (either  

(x) p(x)  or   x p(x)) is called as x–bound part of that given formula.  

The formula p(x) either in “(x) p(x)” or in “ x p(x)” is called as the scope of the quantifier. 

5.4.1.  Example 

Suppose the universe of discourse is the set of integers. 

Consider the statement that 

  p(x) :  2x 0  

 We know that 2x 0  for all integers 

 So p(x) is true for all x in the universe of discourse. 

 We know that we write this fact as (x) p(x). 

 This (x) p(x) is a x–bound part. 

5.4.2. Example: 

Suppose the universe of discourse is the set of all complex numbers. 

Consider the statement that  

“If y is a complex number, then there exist a complex number x such that x2 = y. 

The expression (y) ( x (x2 = y)) denotes the statement that “If y is a complex number, then 
there exist a complex number x such that x2 = y. 

Now the expression   x (x2 = y) is x–bound part of “(y) ( x (x2 = y))”. 
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5.4.3. Definitions 

(i) Any occurrence of in an x–bound part of a formula is called as bound occurrence of x. 

(ii) Any occurrence of x (or a variable) which is not a bound occurrence is called a free 
occurrence. 

5.4.4. Example 

(i). Consider the formula 

    x (p(x)  q(x)) 

 Here the scope of ( x) is p(x)  q(x). 

 Hence in “ x (p(x)  q(x))”,  all the occurrences of x are bound occurrences. 

 (ii) If we consider a statement r(x), then the occurrence of x in r(x) is a free occurrence. 
 
5.4.5.   Examples: 

(i).  Consider the statement: 

   Lakshmi is beautiful. 

The symbolic representation is B(l). It is clear that the statement formula B(x) means x is 
beautiful, where x is a variable. Note that in “B(x)” there is no quantifier. Hence the 
occurrence of the variable x in “B(x)” is a free occurrence. 

(ii).  Consider the statement: 

   “All birds can fly”. 

 Now we symbolize this statement. Write  

   B(x):  x is a bird 

   F(x): x can fly 

It is clear that  “(x) (B(x)  F(x))” denotes the statement “All birds can fly”. 

 In this “(x) (B(x)  F(x))”, all occurrences of x are bound occurrences. 

5.4.6.  Example: 

Symbolize “All the people respects selfless leaders”. 

Solution: Let us consider the following three statements 

   P(x): x is a person 

   S(x): x is a selfless leader 

   R(x, y): x respects y 

 Now the required symbol 

  The expression S(y)  R(x, y) denotes the statement that “If y is a selfless leader then x 

respects y”. 

 The expression “(y) (S(y)  R(x, y))” denotes the statement that “x respects every selfless 

leader y”. 
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The expression “p(x)  (y) (S(y)  R(x, y))” denotes the statement that “person x respects 

every selfless leader y”. 

The expression “(x) [p(x)  (y) (S(y)  R(x, y))” denotes the statement that “All the people 

respects selfless leaders”. 

 

5.4.7.  Note:  

The negations of some frequently used, important statement functions were presented in the 
following table. 

Statement function Negation 
 x F(x) (x) (~F(x)) 
(x) F(x)  x (~F(x)) 

 x (~ F(x)) (x) F(x) 
(x) (~F(x))  x F(x) 

5.4.8. Example: 

Find the negation of the given expression:  “(x) (E(x)  S(x)) 

Solution: Suppose F(x):  “E(x)  S(x)”. 

Now the given expression is of the form “(x) F(x)”, where F(x):  “E(x)  S(x)” . 

 From the above table, the negation of “(x) F(x)” is  x (~F(x)). 

 It is clear that  ~F(x) is the negation of E(x)  S(x). 

 

We know that the negation of (E(x)  S(x))  is “E(x)  ~S(x)”. 

 Now observe that   x (~F(x)) is equivalent to  x (E(x)  ~S(x)).  

This states that “ x (E(x)  ~S(x))” is the negation of the given expression  

“(x) (E(x)  S(x))”. 

5.4.9.  Example 

Find out the quantifiers of the following statements where predicate symbols denotes, 

  F(x): x is fruit 

  V(x): x is vegetable and 

  S(x, y): x is sweeter than y 

(a) Some vegetables are sweeter than all fruits 

(b) Every fruit is sweeter than all vegetables 

(c) Every fruit is sweeter than some vegetables 

(d) Only fruits are sweeter than vegetables 
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Solution: 

(a).  Consider the given statement “Some vegetables are sweeter than all fruits”. 

The expression F(y)  S(x, y) denotes that “x is sweeter than the fruit y”. 

The expression “(y) (F(y)  S(x, y))” denotes that “x is sweeter than y for all fruits y”.  

So  x [V(x)  ((y) (F(y)  S(x, y))] is the required predicate formula. 

 

(b).  We have to symbolize “Every fruit is sweeter than all vegetables”.  

The expression V(y)  S(x, y) denotes the statement “x is sweeter than the vegetable y”. 

 
The expression (y) (V(y)  S(x, y)) denotes the statement  

“x is sweeter than all vegetables y”.  

Therefore the required predicate formula is “(x) [F(x)  (y) (V(y)  S(x, y))]”. 

 

(c).  We have to symbolize “Every fruit is sweeter than some vegetables”.  
The expression   y (V(y)  F(x, y)) denotes “there exists a vegetable y such that x in sweeter 
than y”.  

Hence the required predicate formula is “(x) [F(x)   y (V(y)  F(x, y))]”. 

 

(d).   We have to symbolize the given statement “only fruits are sweeter than vegetables”.  

In other words, this statement can be written as  “if x is sweeter than all vegetables, then x is 
a fruit”.  

The expression “(y)(V(y)  S(x, y))” denotes the statement “x is sweeter than all 
vegetables”. 

Hence the required predicate formula is [(y) (V(y)  S(x, y) ) ] F(x). 
 
5.5  SUMMARY:  
 
 In the previous Lessons, we discussed regarding the Statements, connectives, 
tautology, contradiction,  truth tables, etc.  In this Lesson we added some more knowledge by 
presenting  new concept “Quantifier”.  The concepts Universal Quantifier, Existential 
Quantifier and Universe of Discourse were explained and some related examples were 
presented.  Finally we presented the concepts:  free variable and bounded variable, and 
included sufficient number of examples that are needed for clear understanding of the new 
concepts. 
 
5.6  TECHNICAL TERMS:  
 
Quantifiers  

( “all” and “some”). 

Universal Quantifier 
The quantifier  “all” is called as the universal quantifier. 
 
Existantial Quantifier 
The quantifier  “some” is called as the universal quantifier. 
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The Universe of discourse. 

A variable that was quantified may belongs to certain set, called as the universe of discourse 
or the domain or simply universe. 

 

Bound Variable. 

In the expressions “(x) p(x)” and  “ x p(x)”, the variable x is called as bound variable.  
 
Free Variable 
In the expression like “p(x)”, there is no bound such as “for all”, or “there exists”, such a 
variable is called as free variable. 

 
5.7  SELF ASSESSMENT QUESTIONS: 
  

1.   Find out the quantifiers for the following statement 

“Every integer is a rational number”. 

Ans:  (x) (I(x)  Q(x)) is the required expression where I(x) denotes “x is an integer”, and 
Q(x) denotes “x is a rational number”. 
   

  2.    Find out the quantifiers for the following statement 

“Every integer is not an even integer”. 

Ans:  “(x) (I(x)  ~E(x))” is the required expression where I(x) denotes “x is an integer”, 
and E(x) denotes “x is an even integer”. 
 

3.   Find out the quantifier for the statement: 

 “Every two wheeler is a scooter”. 

The expression (x) (K (x)  L(x)) denotes the statement that “every two wheeler is a 
scooter”. 
 

4. Find out the quantifier for the statement: 
“All dogs are not cats”. 
 

“(x) (D(x)  ~C(x))” is the required expression where D(x) denotes “x is a dog”, and C(x) 
denotes “x is a cat”. 
 

5.   Symbolize “All Dogs are Animals” using the quantifier. 

Ans:   The expression (x) (D(x)  A(x)) denotes “All dogs are animals”, where D(x): x is a 
dog and A(x): x is an animal. 

. 

6.   Symbolize “Some horses are black” 

Ans:  The expression   x (H(x)  B(x)) denotes “there exists a horse which is black (or) 
some horses are black”, where  H(x): x is a horse, and B(x): x is black.  
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LESSON - 6 

INFERENCE THEORY FOR PREDICATE 
CALCULUS 

 
OBJECTIVE: 

 To know more about predicate calculus. 
 To understand the Rules of Inference. 
 To identify the validity of arguments.  
 To Learn the additional rules of inference.   
 To develop skills in solving the problems by using rules of inference.  

 

STRUCTURE: 

6.1   Introduction 
6.2   Universal Specification 
6.3.  Universal Generalization 
6.4   Existential Specification 
6.5   Existential Generalization 
6.6.  Formulas with more than one Quantifier  
6.7   Summary 
6.8  Technical Terms 
6.9   Self Assessment Questions 
6.10  Suggested Readings 
 
6.1   INTRODUCTION: 
 

In earlier lessons, we have already discussed the “inference theory for the statement 
calculus”.  We know that the method of derivation related to the predicate formulas uses the 
rules of inference that discussed for the statement calculus. In addition to the rules of 
inference discussed pfor the statement calculus, in derivations, we also use certain additional 
rules (or principles) that are given below:  Universal Specification (US, in short), Universal 
Generalization (UG, in short). Existential Specification (ES, in short).  Existential 
Generalization (EG, in short). 
 
6.2.  UNIVERSAL SPECIFICATION (US): 
 
If (x) p(x) is true, then the universal quantifier can be dropped to obtain “p(c) is true”, where 
c is an arbitrary object in the universe of discourse. 
 
6.2.1.  Example: 
 
Consider the following statements. 
All women are mortal. 
Lakshmi is a woman. 
Here the universe is the set of all women. 
 
 M(x): x is mortal 
 (x) M(x): all women are mortal (as x is in the universe). 
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Since “Lakshmi is a woman”, we have that  “Lakshmi” is in universe of discourse.  
So by using Universal Specification we may replace x by “Lakshmi”,.  
If we replace x by Lakshmi in “x is mortal”, we get that “Lakshmi is mortal”.  
Note that in this example, we used US. 
 
6.3.  UNIVERSAL GENERALIZATION (UG): 
 
If P(c) is true for all c in the universe of discourse, then the universal quantifier may be 
prefixed to obtain (x) P(x). 
 
6.3.1.   Example: 
 
Suppose that  U = {1, 2, 3, 4} is the universe of discourse. 
Suppose that  p(x) : “x2  50”. 

It is clear that for every x U the statement  x2  50 is true. 

  If x = 1 then x2 = 1  50, and so p(1) is true 

  If x = 2 then x2 = 4  50, and so p(2) is true 

  If x = 3 then x2 = 9  50, and so  p(3) is true 

  If x = 4 then x2 = 16  50, and so p(4) is true 

Now we verified that P(c) is true for all c in the universe U of discourse. 
Hence, by Universal Generalization, we can write “(x) P(x)”. 
 
6.3.2. Example: 
Prove the following statement (transitivity) by using the rules of Inference: 
  (x) (P(x)  Q(x))  (x) (Q(x)  R(x))  

   (x) (P(x)  R(x)) 

Solution: Given statements (premises) are: 

  (x) (P(x)  Q(x)) Premise–1 

         and 

  (x) (Q(x)  R(x)) Premise–2 

Assuming premise–1 and premise–2 we have to obtain the conclusion “(x) (P(x)  R(x))”. 

 

Derivation: 

(x) (P(x)  Q(x)) P (Premise–1) 

P(c)  Q(c)  US and (1) 

(x) (Q(x)  R(x)) P (Premise–2) 

Q(c)  R(c)  US and (3) 

P(c)  R(c)  [(2), (4) and Inference Rule (hypothetical Syllogism)] 
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(x) (p(x)  R(x) UG and (5) 

Hence we get the conclusion that   (x) (p(x)  R(x). 

So we proved the given statement that 

 [ (x) (P(x)  Q(x))  (x) (Q(x)  R(x))]   (x) (P(x)  R(x)). 

6.3.3. Example 

Consider the following statements. 
 All men are selfish. (Premise–1) 
 All kings are men. (Premise–2) 
 Prove that all kings are selfish. 
 
Solution: Suppose that   
  M(x): x is man. 
  K(x): x is King. 
  S(x): x is selfish. 
 (x) (M(x)  S(x)) is Premise–1; and  

(x) (K(x)  M(x)) is Premise–2.  

The derivation is as follows. 

(x) (M(x)  S(x)) P (Premise–1) 

M(c)  S(c)  US, (1) 

(x) (K(x)  M(x)) P (Premise–2) 

K(c)  M(c)  US, (3) 

K(c)  S(c)  [(2), (4) and Inference Rule hypothetical syllogism] 

(x) (K(x)  S(x)) UG and (5) 

Hence we get that “All Kings are selfish”. 
 

6.3.4.  Example 
Prove or disprove the validity of the following argument by using the rules of inference. 
 All men are warriors. (Premise–1) 
 All Kings are men.  (Premise–2) 
 Therefore All Kings are warriors. 
 
Solution: Let 
 M(x): x is a man. 
 K(x): x is a king 
 W(x): x is a warrior 

(x) (M(x)  W(x)) (Premise–1),  

(x) (K(x)  M(x) (Premise–2).  

Now the derivation is as follows: 

(x) (M(x)  W(x)) P (Premise–1) 
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M(c)   W(c)  US and (1) 

(x) (K(x)  M(x)) P (Premise–2) 

K(c)  M(c)  US and (3) 

K(c)   W(c)  [(2), (4), and Inference rule: hypothetic syllogism]  

(x) (K(x)   W(x)) UG and (5) 

Now we got the conclusion that “All kings are warriors”. 
 

6.3.5.  Example 
 
Using predicate logic, Rules of Inference, show that the following argument is valid. 
Every wife argues with her husband.  
X is a wife.  
Therefore, X argues with her husband. 
 
Solution: Write 
 W(x): x is a wife. 

 A(x, h): x argues with her husband, where h denotes husband. 

(x) (W(x)  A(x, h)): Every wife  x argues with her husband h. 

  (x) (W(x)  A(x, h)) Premise–1 

 W(x): x is a wife  Premise–2 
 

Derivation: 

W(x)   P (Premise–2) 

(x) (W(x)  A(x, h)) P (Premise–1) 

W(x)  A(x, h)  US and (2) 

A(x, h)  [(1), (3) and modus ponens] 

Therefore, A(x, h): x argues with her husband. 

So we conclude that if X is a wife, then x argues with her husband. 
 
6.4.  EXISTENTIAL SPECIFICATION (ES): 
 
If  x P(x) is assumed to be true, then P(c) is true for some element c in the universe of 
discourse. 
 
6.5.  EXISTENTIAL GENERALIZATION (EG): 
 
If P(c) is true for some element c in the universe of discourse, then we can write  “ x P(x)” is 
true. 
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 6.5.1. Example 
Prove that    x (r(x)  q(x))  ( x r(x))  ( x q(x)) by using the rules of inference. 
 
Solution: The given premise is   x (r(x)  q(x)).  

We have to prove the conclusion that  ( x r(x))  ( x q(x)). 

The derivation is as follows: 

 x (r(x)  q(x))              P (Premise) 

r(y)  q (y)  ES and (1) 

r (y)   [(2) and Inference Rule (Simplification)] 

q (y)   [(2) and Inference Rule (Simplification)] 

 x r (x)  EG and (3) 

 x q (x)  EG and (4) 

 x r (x)   x q (x) [(5), (6), and Inference Rule:I9] 
 

6.5.2.  Example 

Prove that “  x (M(x))” follows logically from the premises. 

  (x) (A(x)  M(x)) and  x A(x) 

Solution: The given two premises are 

  (x) (A(x)  M(x) Premise–1 

    x A(x)  Premise–2 

 We have to get the conclusion:  x (M(x)). 

 

Derivation: 

 x A(x)  P (Premise–2) 

A(c)   ES and (1) 

(x) (A(x)  M(x)) P (Premise–1) 

A(c)  M(c)  US and (3) 

M(c)   [(2), (4) and Inference rule (Modus Ponens)] 

 x M(x)  EG and (5) 
 

6.5.3.  Example 
 
Explain with an example:  
  (x) [E(x)  B(x)] need not be a conclusion form  x E(x) and (x) B(x) 
Solution: 
Let  U = {1, 2} be the universe of discourse. 
Write: 
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  E(x): x is even 
  B(x): x is odd 

Since 1 is an element of U such that 1 is odd, it is true that    x B(x) (by EG). 

Since 2 is an element of U such that 2 is even, it is true that   x E(x) (by EG). 

 E(x)  B(x): means x is both even and odd.  

 If x = 1 then x is not both even and odd. 

 If x = 2 then x is not both even and odd. 

 So there is no element in the universe U which is both even and odd. 

So E(x)  B(x) is False for any x in the universe. 

Therefore  (x) (E(x)  B(x)) is False.  

Hence we got that “(x) (E(x)  B(x)) need not be a conclusion from  x E(x) and  x B(x)”. 

  

6.6.  FORMULAS WITH MORE THAN ONE QUANTIFIER: 
 
In the above parts, we studied the formulas with one quantifier. One may consider the 
formulas with more than one quantifier. 
If we consider a 2–place predicate formula “P(x, y)” where x, y are variables, then the 

following different cases may exists. 

  (x) (y) P(x, y) 

  (x) (y) P(x, y) 

  (x) (y) P(x, y) 

  (x) (y) P(x, y) 

  (y) (x) P(x, y) 

  (y) (x) P(x, y) 

  (y) (x) P(x, y) 

  (y) (x) P(x, y)  

The logical relation of the above mentioned predicate formulas was presented in 

diagrammatic form in the following: 
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6.7  SUMMARY: 
 

In earlier lessons, we have already discussed the statement calculus, and inference theory for 
the statement calculus.  We know that the method of derivation is solving the problems 
related to the predicate formulas uses the rules of inference that discussed for the statement 
calculus. In addition to those rules of inference discussed for the statement calculus, in 
derivations, we also use certain rules (or principles). The names of the rules are:  Universal 
Specification, Universal Generalization, Existential Specification, and Existential 
Generalization. These four additional rules were discussed and related examples were 
presented for better understanding of the reader. 
 
6.8  TECHNICAL TERMS: 
 
Universal Specification (US) 
If (x) p(x) is true, then the universal quantifier can be dropped to obtain “p(c) is true”, where 
c is an arbitrary object in the universe of discourse. 
 
Universal Generalization (UG) 
If P(c) is true for all c in the universe of discourse, then the universal quantifier may be 
prefixed to obtain (x) P(x). 
 
Existential Specification (ES) 
If  x P(x) is assumed to be true, then P(c) is true for some element c in the universe of 
discourse. 
 
Existential Generalization (EG) 
If P(c) is true for some element c in the universe of discourse, then we can write  “ x P(x)” is 
true. 
 
6.9  SELF ASSESSMENT QUESTIONS: 
  
1.    Prove the following statement (transitivity) by using the rules of Inference: 

  (x) (R(x)  S(x))  (x) (S(x)  T(x))  

   (x) (R(x)  T(x)) 

 

2.    Prove the validity of the following argument by using the rules of inference. 
 All birds do have wings. (Premise–1) 
 All eagles are birds.  (Premise–2) 
 Therefore eagles do have wings. 
 
3.   Prove that “(x) (M(x))” follows logically from the premises. 

  (x) (A(x)  M(x)) and  (x) A(x) 

 
4.   Using predicate logic, Rules of Inference, show that the following argument is valid. 
Every husband argues with his wife.  
X is a husband.  
Therefore, X argues with his wife. 
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5.    Prove that   x [p(x)  q(x)]  [ x p(x)]  [ x q(x)] 
 
6.    Prove that   r(x)  (x) q(x)  ( x) [r(x)  q(x)] 
 
7.   Test the validity of the argument 
If a person is rich, he is happy. 
If a person is happy, he lives long. 
Therefore, Rich  persons live long. 
Ans: Valid 
 
8.  Test the validity of the following argument:  
If there is a quarrel by students, the examinations will be postponed. 
There was no quarrel by students 
Therefore, the examination was not postponed. 
Ans: Not Valid 

 
6.10  SUGGESTED READINGS: 
 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 
Theory, Prentice Hall India Ltd, New Delhi, 2014 (second edition) ISBN-978-81-203-
4948-3. 

 
2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 

1977. 
 

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical  
           Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-   
           9780367367237  
 

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  
 
                                                     

   Prof. Dr. Bhavanari Satyanarayana 
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7.1 INTRODUCTION:   

A finite-state machine (FSM) or 
machine, is a mathematical model of computation
exactly one of a finite number of 
state to another in response to some
transition. An FSM is defined by a list of its states, its initial state, and the inputs that trig
each transition.  The behavior of state machines can be observed in many devices in modern 
society that perform a predetermined sequence of actions depending on a sequence of events 
with which they are presented. 
products when the proper combination of coins is deposited, 
steps is determined by the floors requested by riders, 

A study of finite automaton is their applicability to the design of several common types of 
computer algorithms and programs. 
 

 
Let us now describe the operation of a finite automaton in more detail. 
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state diagrams of finite state machine.  
s related to finite state machine. 
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) or finite-state automaton, or finite automaton, or simply a 
model of computation.  It is an abstract machine that can be in 

exactly one of a finite number of states at any given time.  The FSM can change from one 
state to another in response to some inputs;  the change from one state to another is called a 

. An FSM is defined by a list of its states, its initial state, and the inputs that trig
The behavior of state machines can be observed in many devices in modern 

society that perform a predetermined sequence of actions depending on a sequence of events 
with which they are presented.  Simple examples are vending machines, which dispense 
products when the proper combination of coins is deposited, elevators, whose sequence of 

s is determined by the floors requested by riders, traffic lights,  

finite automaton is their applicability to the design of several common types of 
and programs.  

 

Let us now describe the operation of a finite automaton in more detail.  

 

, or simply a state 
that can be in 

The FSM can change from one 
the change from one state to another is called a 

. An FSM is defined by a list of its states, its initial state, and the inputs that trigger 
The behavior of state machines can be observed in many devices in modern 

society that perform a predetermined sequence of actions depending on a sequence of events 
, which dispense 

, whose sequence of 

finite automaton is their applicability to the design of several common types of 
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Strings are fed into the device by means of an input tape, which is divided into squares, with 
one symbol inscribed in each tape square (see figure).  The main part of the machine itself is 
a “black box” with innards that can be, at any specified moment, in one of a finite number of 
distinct internal states.  This black box - called the finite control - can sense what symbol is 
written at any position on the input tape by means of a movable reading bead.   Initially, the 
reading head is placed at the leftmost square of the tape and the finite control is set in a 
designated initial state.  
 
7.2 FINITE STATE MACHINES:  
 
Input:  The various inputs applied at the input side of the model are the elements of an input 

set, ℐ , also called the input alphabet. 
 
Output:  The various outputs generated at the output side of the model are the elements of an 
output set O, also called the output alphabet. 
 

Next state function   : ζ  ℐ   ζ   is a function and   

Output function     : ζ  ℐ O  is a function. 
 

7.2.1 Definition:   An input-output machine is a system M  =  (ζ, ℐ, O, , )  

where  ζ   is a finite set (called the set of states of the machine),  ℐ   is a finite set (called the 

set of inputs (or input alphabet) of the machine),  O  is a finite set (called the output 

alphabet),    

 : ζ  ℐ   ζ   is a function (called the next state function) and   : ζ  ℐ   O  is a function 

(called the output function). 

 
7.2.2 Notation: (i)  The non-negative integers denote successive instances of time;  
(ii)   at = the input to the i/o – machine   (that is,  input to the machine) at time   t;     

(iii)   s(t)  =  state of the machine at time  t;   

 (iv)   s(t + 1)  =  (s(t), at);     

 (v)    w(t)  =  output at time  t;      

 (vi)   w(t)  =  (s(t), at)   [Here      gives the current output].  

 
7.2.3 Note: If we are not concerned about output only, then we may omit O and .   In this 
case,  we may define a machine as follows:  
 

7.2.4 Definition:  A state machine M   is   (ζ, ℐ , ),   where   ζ   is a finite set,   ℐ    is a finite 

set and      is a function from ζ  ℐ    to   ζ .   Here  ζ,  ℐ   and      are called the set of states, 

the set of inputs and the next state function, respectively.    
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7.2.5 Note:   We use term machine to refer either an  i/o-machine   or   state machine.  
 
7.2.6 Example: (Parity-check machine):  This machine is designed to show whether the 
total number of  1’s  in a finite sequence of   0’s   and   1’s   is whether even or odd  (for 
example, in the sequence   1100110010,  the number of 1’s  is   5  which is an odd number).  
Now we define this machine mathematically as follows:   

This machine has an input  0  or  1.   So   ℐ   =  {0, 1}.    
States correspond to  'even'  or  'odd'.   So   ζ  =  {Even, odd}.   
We define      and      as follows:   
 
(Even, 1)  =  odd,   (Even, 0)  =  Even,   
(odd, 1)  =  Even,   (odd, 0)  =  odd,    
 
(Even, 1)  =  0,      (Even, 0)  =  E,  
(odd, 1)  =  E,        (odd, 0)  =  0.   
 
Here we use the symbol   ‘ 0 ’  for  ‘odd ’,  and the symbol  ‘ E ’   for   ‘even’   and  so    
 O   =  {0, E}.  
 
Note that the last output gives the result.  
Table for party check machine:  
 

 (s, a) (s, a) 
Input  0 1 0 1 
States 

 
EVEN  

 
ODD  

 
 

EVEN  
 

ODD  

 
 

ODD  
 

EVEN  

 
 

E 
 

O  

 
 

O  
 

E 
 
7.3  STATE TABLES AND DIAGRAMS:  

 
In this section, we come to know how to form a table; and how to draw a diagram  
representing a given input/output machine. 
 
7.3.1 How to draw the directed graph for a given finite machine: 

  
(i) The nodes of the graph are the states of the machine;  
(ii) For every input ‘a’ and state  s;   define an arc that originates at the node  ‘s’    and 

terminates at the node  (s, a).  
 

(iii) Label the arc (described in (ii)) with input  “a” followed by the output (s, a).  The 
arc is illustrated in the diagram.  

 
 
 
 
 
 

a, (s, a) 

s (s, a) 
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7.3.2 Problem: Draw the directed graph for the parity-check machine.  
 
Solution:  Following the procedure given in 7.3.1,    we get the following graph. 
 
 
 
 
 
 
 
 
7.3.3 Note: (i) The directed graph obtained in the above problem (following the procedure 
given in 7.3.1) is called the state-diagram of the given machine.   
 (ii) If the state diagram is known, then we can write the state table and vice versa. 
 
7.3.4 Problem: Draw the state diagram for the machine given by the table.  
 

   
 0 1 0 1 
s1 s1 s2 x y 
s2 s2 s4 z x 
s3 s3 s3 x y 
s4 s1 s2 y z 

 
 
Solution:   Here the nodes are   s1, s2, s3   and   s4,    
 
The state diagram is given by 
 
 
 
 
 
 
 
 
 
 
 
 
7.3.5 Problem: Write the state table for the machine given by the state diagram. 
 
 
 
 
 
 
 
 
 

(0, 0) 
even 

odd 
1, E 

0, E 
1, 0 

s4 

s1 

0, z 

s2 

s3 

1, y 

0, x 

1, z 1, x 

1, y 
0, x 

0, y 

s1 

 

 
 

 

 

0, 1 

0, 1 

1, 1 

s3 

1, 1 

1, 1 

0, 0 

1, 1 0, 1 

1, 1 

0, 0 

s2 

s4 

s5 
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Solution:  

   
0 1 0 1 

s1 s2 s2 0 1 
  s2 s2 s3 1 1 

s3 s5 s5 0 1 
s4 s4 s1 1 1 
s5 s5 s4 1 1 

 

 
7.3.6 Problem:  Construct a machine to add two given binary digits and draw its state 
diagram.  
 
Solution: (i) In the computation for the addition of two binary integers, corresponding digits 
of the two integers are operated. For this computation, we start with the right most pair of 
digits.  So the corresponding digits of the given two binary integers are fed into the machine 
simultaneously. 
  
 (ii) If the number of the significant digits of the two given numbers are not equal, then we 
use the symbol b  (for blank) to fed into the machine. For example, suppose the given 
numbers are 101 and 11.  Then we fed (1, 1) at first step, (0, 1) at second step and (1, b) at the 
third step.  

 (iii) From the above, we can understand that the input alphabet is  ℐ   = {(x, y) /x, y {0, 1, 
b} }.    
 
(iv) The output alphabet is  O  =  {0, 1}.    
 
(v) The states of the machine correspond to carry.  
 
 Therefore   ζ  =  {s0, s1},  where  s0  stands for the carry  “0” and   s1 stands for the carry “1” .    
 

 
(vi)  The state diagram to add two binary integers is given in the figure.  In this diagram, we 
eliminated numerous arrows by simply labeling a single arrow with various possible inputs 
and corresponding outputs. 
 
 
 
 
 
 
 
 
 
 
7.3.7 Example: How to get the sum of 101 and 11 from the above machine?  
 
Step-(i):   In the beginning, we suppose that the machine is at starting state s0. Now let us 
start the procedure. Take the first right most digits of both the given numbers.  They are 1, 1.  
So we use (1, 1).  

(0, 0), 1 
(b, 0), 1 
(0, b), 1 
(b, b), 1 

s0 s1 

(1, 1), 0 

(0, 0), 0 
(b, b), 0 
(0, b), 0 
(b, 0), 0 
(1, b), 1 
(b, 1), 1 
(0, 1), 1 
(1, 0), 1 

(1, b), 0 
(b, 1), 0 
(1, 1), 1 
(0, 1), 0 
(1, 0), 0 
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Step-(ii): Fed the input (1, 1).  Since the machine is at the state  s0,  the output is “0” and the 
next state is  s1  (this means, for the next step, the  carry  is “1” ).  
 
Step-(iii): Consider the second digits (from right) of the given two numbers.  They arc 0, 1.  
So fed (0, 1)  into the machine.  Then the output is “0” and the machine still lies in state  s1 
(see the diagram).  
 
Step-(iv): Now we have to consider the third digits (from right) of the given numbers.  The 
given second number has only two digits.  So we use  b  (blank) for the third place which is 
not significant.  So the input is (1, b).  Since the machine is at state  s1  when we fed input  (1, 
b), the output is “0” and machine is still in state  s1.  
 
Step-(v): Since the number of digits in the given numbers is not more than 3, the process is 
completed here.   To get the answer, consider the outputs in the order.   
 
The answer is  

 
1 

0 0 0 
 
 
 
 
 

Fina
l 
carr
y  

3rd 
output  

2nd 
output  

1st output 

 
Therefore 101 + b11 = 1000 
 
7.4  SUMMARY: 
 
A finite-state machine (FSM) or finite-state automaton, finite automaton, or simply a state 
machine, is a mathematical model of computation. It is an abstract machine that can be in 
exactly one of a finite number of states at any given time. The FSM can change from one 
state to another in response to some inputs; the change from one state to another is called a 
transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger 
each transition.  In this lesson we have learned basic terminologies of a finite machine and 
how to draw a state table corresponding to a digraph and vice-versa. 

 
7.5  TECHNICAL TERMS: 

 
Input:   
Inputs applied at the input side of the model. 
 

Output:  
Outputs generated at the output side of the model and we denote output alphabet as O.  
 

Next state function     

A function which provides next state ( : ζ  ℐ   ζ   is a function) is named as next state 
function.  
 

Output function  

A function which provides the out put ( :   ζ  ℐ   O  is a function) is named as out put 
function. 
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Input-output machine 

An input-output machine is a system M  =  (ζ, ℐ, O, , )  

where  ζ   is a finite set (called the set of states of the machine),  ℐ   is a finite set (called the 
set of inputs (or input alphabet) of the machine),  O  is a finite set (called the output 
alphabet),    

 : ζ  ℐ   ζ   is a function (called the next state function) and   : ζ  ℐ   O  is a function 
(called the output function). 
 
7.6  SELF ASSESSMENT QUESTIONS: 

 
1.   Determine a state diagram for a machine  that has input  0  or  1  and outputs the 
remainder when the number of received  1's  is divisible by 5.                        
 

Ans: 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Draw the labeled digraphs for the machines given by the State table. 
 

 0 1 
s0 s0 s1 
s1 s1 s2 
s2 s2 s0 

.   
Ans:            
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0, 0 

0, 4 

0, 3 

1, 3 

1, 4 

1, 1 

0, 1 

0, 2 

1, 0 

1, 2 

s4 

s1 

s0 

s2 

s3 

2 

1 

0 

s0 

1 

0 

0 s2 

s1 
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3. Draw the state table for the Finite machine represented by the digraph given below. 
 
 
 
 
 
 
 

 
 
 

Ans: 
 a b c 
s0 s0 s0 s0 
s1 s2 s3 s2 
s2 s1 s0 s3 
s3 s3 s2 s3 

 
 

7.7  SUGGESTED READINGS: 
 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 
Theory, Prentice Hall India Ltd., New Delhi 2014 (second edition) ISBN-978-81-203-
4948-3. 
 

2.  James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 
1977. 
 

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237  
 

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  
UTM Springer, 1998.  

 
 

Prof. Dr. S. Srinadh 
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STATE HOMOMORPHISMS 
 

OBJECTIVES: 
 

 To understand state homomorphism  
 To know state machine congruence  

 
STRUCTURE: 

8.1   Introduction 
8.2  Dynamics 
8.3.  State homomorphisms  
8.4  State Machine Congruence 
8.5  Summary  
8.6  Technical Terms 
8.7  Self Assessment Questions 
8.8  Suggested Readings  
 

8.1. INTRODUCTION:  
 

In this lesson,  we define the notions: state homomorphism and state machine congruence and 
prove some important theorems. 
 

8.2.  DYNAMICS  
 

8.2.1 Note:  Let X be a set.    

(i) We define   X*  = the set of all finite sequences of elements from  X.    

 The elements of   X*  are called strings.  
 

(ii) The binary operation “concatenation” on   X*  is defined as   

 (x1x2 … xn).(y1y2 … yk)  =   z1z2 … zn+k,  where  zi  =  xi   for  1  I  n ;  and    

zn+j  =  yj   for  1   j  k   (that is,   (x1x2 … xn).(y1y2 … yk)  =   x1x2 … xny1y2 … yk).   

 

(iii) The length  1(w)  of the string   w = x1x2 … xn   is defined to be  n.   

It is clear that   1(w1ow2)  =  1(w1) + 1(w2).  
 

(iv) The operation “concatenation” is associative.   
 

(v) Empty sequence is denoted by   “e” ,  and we assume that   e  X* with    

woe  =  w  =  eow   for all  w  X*.    

So   X*   has an identity element.  Thus X* becomes a monoid.   
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8.2.2 Note:  Consider the state machine  M  =  (ζ, ℐ, ).  

(i)  We define  *: ζ  ℐ*    ζ    as   *(s, a)  =  (s, a)  for all   s  ζ   and   a  ℐ.   If a1a2 

… ak-1ak is in  ℐ*,   then we define   

* (s, a1a2 … ak-1ak)  =    (* (s, a1a2 … ak-1), ak).   Here   *(s, e)  =  s   is a convention.    

By the definition, it is clear that    *: ζ  ℐ*  ζ   is an extension of   .     

(ii) Sometimes we write   (s)w   to mean    *(s, w)   for   w  ℐ*.  

 

8.2.3 Example:  Consider the machine given by the table. 

Sates  

0 1 

1 3 1 

2 2 3 

3 2 1 

 

Here    *(1, 00)  =  (*(1, 0), 0)  (by definition of  *)  

                            =  ((1, 0), 0)  

                            = (3, 0)  =   2.  

Similarly,   *(2, 00)   =   2,   and   *(3, 00)  =  2.  

 

8.3 STATE HOMOMORPHISMS: 
 

In this section we define state machine homomorphism and state machine congruence and 
prove some important theorems. 
 

8.3.1. Definition:  Let   M1  =  (ζ1, ℐ, 1)   and    M2  =  (ζ2, ℐ, 2)   be state machines.   

A function  f : ζ1 ζ2  is called a state homomrphism of  M1  into  M2  if   

 f(1(s1, a))  =  2(f(s1), a)   for all   s1  ζ1,   and   a  ℐ.   

 If   f   is a bijection,  then  f   is called a state isomorphism.  
 

8.3.2.  Problem: If   f   is a state homomorphism from  M1  =   (ζ1, ℐ, 1)   into   

M2 = (ζ2, ℐ, 2),  then  f(1
*(s, w))  =  2

*(f(s), w)   for all   w  ℐ*.  

 

Proof: (The proof is by induction on the length of   w,   where  w  ℐ*).    
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Suppose   w  ℐ*   with  1(w)  = 1.    

Then   f(1
*(s,  w))  =  f(1(s,  w))   (by the definition of  *) 

 =   2(f(s),  w)    (since  f  is a state homomorphism)   

=  2
*(f(s),  w) (by the definition of  *).   

Now we suppose the induction hypothesis.   

That is, we suppose the result for all   w  ℐ*   with  1(w)  =  k-1.   

Suppose   w  ℐ*   with  1(w)  =  k.    

Then   w  =  w0w1   with   1(w0) = k -1  and 1(w1) = 1.   

Consider     f(1
*(s,  w))  =  f(1

*(s,  w0w1))                

=   f(1(1
*(s, w0), w1))       (by the definition of  *)   

=  2(f(1
*(s, w0)), w1)        (since  f  is a state  homomorphism)    

=  2(2
*(f(s),  w0),  w1)   (by the induction hypothesis)                

=   2
*(f(s),  w0w1)  (by the definition of  * )   

 =   2
*(f(s),  w)  (since   w  =  w0w1).    

Hence the result is true for all   w  ℐ*.   

 

8.4 STATE MACHINE CONGRUENCE: 
 

8.4.1.   Note:   Let   M  =  (ζ, ℐ, )   be a state machine.    

(i).  For any subset   P   of   ζ   and   a  ℐ,  we define  (P, a)  : =   {(s, a)  /  sP}.    

(ii) If    is a partition of  ζ,  then we denote the class of the  partition containing   s   by  [s].     

(iii) A partition   of  ζ  is said to be a state machine congruence if for each subset   P  in  

  and each input  a  ℐ,   we have  that the set  (P, a)   is contained in a unique class of the 

partition .  The class containing   (P, a)   is denoted by  [(P, a)].     

(iv) If      is a state machine congruence on   M  =  (ζ, ℐ, ), then    

M  =  (,ℐ,  ),  where    (P, a)  =  [(P, a)],  is a machine.    

 

8.4.2.  Theorem: Let      be a state machine congruence on  M  =  (ζ , ℐ, ).   Then there 

exists a state homomorphism  f   from  M  onto  M   =  (, ℐ,  )   given by        f(s)  =  [s].  

 

  Proof: Since   is a partition of   ζ ,   we have that   [s]   is a unique class containing   s.   
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Therefore   f : ζ     defined by   f(s)  =  [s]   is well defined.   

Now it remains to show that   f((s, a))  =   (f(s), a)   (That is, [(s, a)]   =   ([s], a)).   

Since      is a machine congruence, by the definition of   we have   that     ([s], a)  =  

[([s], a)]    ….    (1). 

Since    ([s], a)  =   {(x, a)  /  x  [s]},   we have that  

(s, a)    ([s], a)  

     [(s, a)]   =   [([s], a)]  

                [(s, a)]   =   ([s], a)              (from (1)) 

So we have that     [(s, a)]   =   ([s], a)     ……   (2). 

Therefore    f((s, a))  =  [(s, a)]        (by the definition of  f)  

                                    =    ([s], a)     (from (2)) 

                                    =    (f(s), a)    (by the definition of  f) 

Now we have to show that   f   is onto.   

For this, take    P  .   

Since   P  is an equivalence class, it is non-empty.   

Let    s    P.   Since   s   is in the equivalence class   P,  we have that   [ s]  =  P.     

Now     f(s)  =  [ s ]  =  P.   

This shows that   f   is onto.  The proof is complete. 
 

8.4.3.  Theorem:  Let   f   be a state homomorphism from the state machine   M  =  (ζ, ℐ, )   

onto the state machine M1  =  (ζ1, ℐ, 1).   Then there is a state machine congruence on   M   

such that   M    is isomorphic to   M1.   

 

Proof:  Step-(i):  In this step, we find out a partition of    ζ.  

Define    x  ~  y  f(x)  =  f(y)   for all   x, y  ζ.    

Then   ~   is an equivalence relation on   ζ   and the set      of all equivalence classes form a 

partition for  ζ.  

 

Step-(ii):  Now we show that      is a state machine congruence.     

For this,  take    P   and  ‘a’  be an input symbol.    

Any two elements of  (P, a)  are of the form  (s, a), (s1, a)  where   s, s 1  P.   

Now     s, s1  P    f(s) = f(s1).  
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Then, f((s, a)) =   1(f(s), a)  =  1(f(s
1), a) =   f((s1, a)).   

Therefore  (s, a)  ~  (s1, a), implies that (s, a)  and   (s1, a) belongs to the same 

equivalence class.  

Hence    (P, a)    is contained in one equivalence class.  

This shows that        is a state machine congruence.   
 

Step-(iii): Now we define mapping   g : M M1.  

For this, consider the machine   M  =  (,ℐ,  ).    

Here the definition of       is    (p, a)  =  [(p, a)].    

Define   g :  ζ1,   by   g([s])   =   f(s)   for each class   [s] .  
 

Step-(iv):   Now we show that  the mapping  g  is well defined  1-1, and onto.  

Let   [s1], [s2] .   

Now [s1]  =  [s2]    s1 ~ s2 

                             f(s1)  =  f(s2 )    

                             g([s1])  =  g([s2]).   

This shows that    g   is well defined and  1-1.  

To show that   g   is onto, let   s* ζ1.    

Since   f   is onto,   f(s)  =  s*   for some   s.    

Now   g([s])  =  f(s)  =  s*.     

Hence   g   is onto.  
 

Step-(v):   Now we show that   g   is a state homomorphism.  

Let   [s]    and  a  ℐ.  

Now g(  [s], a))   =   g([(s, a)])   (by the definition of   )  

                            =   f ((s, a))     (by the definition of   g)   

                            =   1(f(s), a)    (since  f   is a homomorphism)   

                            = 1(g([s]), a)      (by the definition of  g).  

Hence   g   is a state homomorhism.    

Now we proved that  g  is a bijection and state homomorphism.     

Hence   M  M, (that is, M  is isomorphic to M).  
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8.5  SUMMARY:  

In this lesson we have discussed the concepts state homomorphisms, state ismorphisms and 
state machine congruences.  Some theorems also included related to these concepts.  
 

8.6  TECHNICAL TERMS: 
 

1. State homomorphism 

A function  f : ζ1 ζ2 such that f(1(s1, a))  =  2(f(s1), a)   for all   s1  ζ1,   and   a  ℐ.   
 
2. State isomorphism  
If f   is a bijection and a state homomorphism, then it is called as State ismorphism.  

 

3.  State machine congruence 
 A partition   of  ζ  is said to be a state machine congruence if for each subset   P  in    

and each input  a  ℐ,   we have  that the set  (P, a)   is contained in a unique class of the 
partition . 

 
8.7  SELF ASSESSMENT QUESTIONS: 
 

1. Define state homomorphism. 

2. Define state isomorphism. 

3.  Define state machine congruence  
  

 

8.8  SUGGESTED READINGS: 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 
Theory, Prentice Hall India Ltd., New Delhi, 2014 (second edition) ISBN-978-81-
203-4948-3. 
 

2. James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 
1977. 
 

3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 
Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237.  
 

4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  
UTM Springer, 1998.  

 

Prof. Dr S. Srinadh   . 
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INPUT / OUTPUT (I/O) – HOMOMORPHISMS 
OBJECTIVES: 
 To know i/o-homomorphism  
 To understand distinguishable states   
 To know the concept of reduced machine  

 

Structure: 

9.1.  Introduction 
9.2.  Behaviour of the Machine. 
9.3.  Input-outpput ( i/o.) Homomorphism  
9.4   Summary 
9.5   Technical Terms 
9.6   Self Assessment Questions 
9.7   Suggested Readings 
 
9.1 INTRODUCTION:  

In the beginning of this lesson we explain the concept behavior of the machine with respect to 
a starting state. We explain the state output machine, input-output homomorphism.  Few 
theorems on these concepts were included. 
  

9.2. BEHAVIOUR OF THE MACHINE: 
 

9.2.1. Definition:   (i).  Let X and Y be two sets.  A behavior from   X   to   Y  is a function    

 : X* \ {e}   Y   where   X   and   Y  are sets and e   is the empty string in   X*. 

(ii) For a machine, by the term behavior from   ℐ   to   O,  we mean a function     

 : ℐ* \ {e}   O.  
 

9.2.2.   Definition: Let   M  =  (ζ, ℐ, O, , )   is an i/o–machine and   s  ζ   be a fixed state  

(call it as  starting state).    

Define inductively a function      as follows: 

s : ℐ* \ {e}  O   by   s (a)  =  (s, a)   for all   a  ℐ.   

s (w, a)   =   (*(s0, w), a)   for all   wa  ℐ* \ {e}.    

Then   s  is a behavior from   ℐ   to  O.   

 

9.2.3.   Note:   Note that   s(wa)   is the last output when the input sequence    wa   is fed to 
the machine with starting  state  s.  
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9.2.4.   Definition: A state output machine is an i/o-machine M  =  (ζ, ℐ, O, , )   such that  

(s, a) = ((s, a))   for a function      form   ζ   to   O.  

The state output machine defined here is denoted by    M  =  (ζ, ℐ, O, , ). 

 

9.2.5.   Note:  If   M   is a state output machine,  then  

(s1, a1)   =   (s2, a2)  (s1, a1)   =   ((s1, a1)  =   ((s2, a2))   =   (s2, a2). 

 

9.2.6.    Theorem:  Let   M  =  (ζ, ℐ, O, , ) be an i/o-machine.  Then there exists a state 

output machine   M1  =  (ζ1, ℐ, O, 1, )  and a one-one function   f   from   ζ  into   ζ1   such 

that   s  =  f(s)   for all   s  ζ.  

 

Proof:  Step-(i):  Write   

 ζ1  =  { 
z

s
  /   s  ζ   and there exists  t  ζ,  a  ℐ  such that  (t, a)  =  s   and    

(t, a)  =  z}  { 

s

  /  s  ζ   and there is no   t  ζ   and   a  ℐ   such that   (t, a)  =  s}.  

Define   1(
z

s
 , a)   =   

)a,s(

)a,s(




,     

1(
z

s
 , a)   =   (s, a).   

Then   M1  =  (ζ1, ℐ, O, 1, 1)   is an i/o-machine. 

 

Step-(ii):   Fix some   z0    O    and define    

 : ζ  O by (
z

s
)  =  z   and   (


s

)  =  z0.   

Now   1(
z

s
, a)  =  (s, a)   (by definition of  ). 

 =  (
)a,s(

)a,s(




)    (by the definition of  ) 

 =  (1(
z

s
 , a))   (by the definition of 1) 

Therefore   1(
z

s
 , a)   =   (1(

z

s
 , a))   which implies  
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 that   M1   =   (ζ1, ℐ, O, 1, )   is a state output machine. 
 

Step-(iii):   Define   f : ζ  ζ1   as follows:   

For   s  ζ ,  choose some output   z   such that there exists  

t  ζ   and   a  ℐ   with (t, a) =  s   and   (t, a) = z.   

Then define   f(s)  =  
z

s
 .   

If no such output   z   exists,  then define   f(s)  =  

s

.   

Now    f(s1) = f(s2)       
1

1

z

s
  =  

2

2

z

s
  

                                    s1  =  s2.      Therefore    f    is one-one.   

Now it remains to show  that   s =  f(s).   

We prove this in the following steps  4, 5 and  6.  
 

Step-(iv): To prove   s  =  f(s),  first we prove that  

      1
*(f(s), wa)   =   

)a),w,s(*(

)wa,s(*




     …..   (1)   

for all   w  ℐ-*,   a     ℐ.   This proof is by induction on   k,  the length of   wa.   

If   k  =  1,   then   1(wa)  =  1    

                            w  =  e      wa  =  a.   

Also    (s, w)  =  s    (since   w  =  e).  

Now    1
*(f(s), wa)   =   1

*(f(s), a)   (since   w  =  e) 

                       =   1 (f(s), a)    (since   a  ℐ) 

                       =    1(
z

s
 , a)    (by definition of  f) 

                       =   
)a,s(

)a,s(




         (by the definition of  1) 

                       =   
)a),w,s(*(

)wa,s(*




   (since   w  =  e). 

Therefore equation (1)   is true if   k  =  1  =  1(wa). 
 

Step-(v):   Suppose  k  > 1,  and equation (1) is true for all strings   wa    

such that  l(wa)    k.  Now suppose    wa    is of length    k  +  1.  
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Since    k  > 1,   l(w) > 1   and so we can write    w  =  w1a1  for some   w1  * ,   a1   .   

Now   l(w)  =  l(w1 a1)  =  k.    

By induction hypothesis, we have that    

         1
* (f(s), w)  =  1

* (f(s), w1a1)   =  
)a),w,s(*(

)aw,s(*

11

11




.   

Now   1
* (f(s), wa)   =   1  (1

* (f(s),  w)), a)   

                                                        (by the definition of   *)   

            =   1 (1
* (f(s),  w1a1) , a)    (since   w  =  w1a1) 

            =  1 (
)a),w,s(*(

)aw,s(*

11

11




, a)    (by induction hypothesis) 

            =    
)a),aw,s(*(

)a),aw,s(*(

11

11




         (by  the definition of   1) 

            =   
)a),aw,s(*(

)aaw,s(*

11

11




         (by the definition of  *) 

           =   
)a),w,s(*(

)wa,s(*




                     (since   w1a1 =  w) 

Hence the equation (1) is true for all sequences   wa   with   wa   *   and   a  .   
 

Step-(vi):  Now   f(s) (wa)   =   (1
*
  (f(s), w), a)    (by the definition  s)              

                =    (1 (1
*
  (f(s),  w),  a)         [by the condition    ( (s, a )  =   (s,  a )]  

                =   (1
*(f(s),  wa))        (by the definition of  *)   

                =    ( 
)a),w,s(*(

)wa,s(*




)     (by (1)) 

               =    (*
  (s,  w), a)            (by the definition  )  

               =    s (wa).  

Hence   f(s)  =   s.  The Proof is complete. 
 

9.3.  INPUT-OUTPUT HOMOMORPHISM (OR  I/O-HOMOMORPHISM):  
 

9.3.1.  Definition: Let   M  =  (ζ, ℐ, O, , )   and   M1 =  (ζ,1 , ℐ , O, 1, 1)    be    

i/o - machines.  A  function   f : ζ   ζ1 is said to be an i/o-homomorphism  if   

f (  (s, a))  =   1 (f(s), a)  and   (s, a)  =   1 (f(s) , a).   

If   f   is a bijection,  then we say that   f    is an   i/o-isomorphism. 
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9.3.2.   Result: Consider the machines   M1  =   (ζ1 , , O, 1, 1)  and    

M = (ζ , ℐ, O, , )  given in Theorem 9.2.6.   Define   g : ζ1  ζ   by   g(
z

s
)  =  s.   

Show that   g   is a i/o-homomorphism. 

Proof: To show this,  we have to show that  g( 1 (
z

s
, a))  =   (g(

z

s
), a)  ….   (i)  and     

 1 (
z

s
 , a)  =   (g  (

z

s
 ), a) …..  (ii).   

Now we prove (i),  

g( 1 (
z

s
 , a)  =  g(

)a,s(

)a,s(




)   (by definition   1)    

=     (s, a)                            (by the definition of  g)    

=   (g (
z

s
), a)                       (since g (

z

s
)  =  s)   

To prove  (ii),          1(
z

s
, a)  =  (s , a)  (by  definition of   1)   

                                                =   (g (
z

s
),  a)  (by the definition of  g).   

Hence   g   in an i/o- homomorphism. 

9.3.3.  Example:    Consider the machines   M1 =  (ζ,1, ℐ, O, 1, 1),  and    

M  =  (ζ, ℐ, O, , ) given in the  tables.                                               

 

Machine M1 

 1  1  

STATES 0 1 0 1 

a b a 1 0 

b b a 1 1 

c c b 1 1 

 

 

 

 



 
Centre for Distance Education                    9.6                        Acharya Nagarjuna University             

Machine M 

     

STATES 0 1 0 1 

0 2 1 1 0 

1 3 0 1 0 

2 2 1 1 1 

3 2 0 1 1 

4 4 2 1 1 

 

If  we  define   f : ζ   ζ1  as   f(0)   =   f(1)  =  a,   f(2)  =  f(3)  =  b,   f(4)  =  c,   then   

  f    is  an  i/o-homomorphism from   M   to   M1 
 

9.3.4.  Theorem: Let   M  =  (ζ , ℐ, O, , )  and    M1 =  (ζ1 , ℐ, O, 1 , 1)   be  

 i/o-machines  and let   f     be an i/o-homomorphism from   M   to   M1.    

If    s   is a state of   M,  then     s =    f(s).  

 

Proof:  Now s(wa)  =    (* (s, w), a)    (by the definition of   s)   

                                 =   1 (f (* (s, w)), a) (since  f  is an i/o- homomorphism)    

                                 =   1 (1
* (f(s),  w), a)  (since   f  is a homomorphism)    

                                 =    f(s) (wa)   (by the definition of   s).   

Hence     s =    f(s). 

 

9.3.5.  Definition:  A partition      of    ζ   where    M  =  (ζ ,  ℐ, O, , )   is  an  

i/o-machine congruence if it satisfies the following two conditions:  

   (i)   (P, a)  is contained in some subset  in      for each    P    and    a  ℐ,  and    (ii) 

 (s, a)  =   (t, a)  for all   a  ℐ  and  s,  t  P. 

9.3.6.  Theorem:  Let    M  =   (ζ, ℐ, O, , )   be an  i/o-machine and  let      an  

i/o-machine congruence.   Then   M   =   (, ℐ, O,   ,  )   is an i/o-machine and the  

function   f   from   ζ    onto    given by   f(s)  =  [s]  is an  i/o-homomorphim form   M   

onto   M . 
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 Proof:  Since an i/o-machine congruence is also a state machine congruence, we have that 

any i/o-machine   M   with an i/o-machine congruence    satisfies the hypothesis of the 

Theorem  8.4.2.  

By Theorem  8.4.2.,   f    is a  state homomorphism from  M  onto   M   =  (, ℐ,  ).   

Define    )a],s([  =   a,s .   Now we show that      is  well defined.  

Suppose    [s] =  [t]   

           t, s     P  for some   p     

            a,t  =  a,s   

                  (by the definition of i/o-machine congruence)   

             a,t  =    a,s       (by the definition of   ).  

Now we show that   f   is an i/o-homomorphism.  

Since   f   is a state homomorphism, by Theorem  8.4.2., it remains to show  that       a,s  =  

  a,sf . 

Now    a,s  =    a,s       (by the definition of   ). 

                      =    a,sf    (by the definition of  f).  

Hence   f   is an i/o-homomorphism.   The proof is complete. 
 

9.3.7.   If   f   is an  i/o- homomorphism from  M  =  (ζ ,  ℐ, O, , )   onto    

M1  =  (ζ1,  ℐ,  O, 1, 1),  then there exists an i/o-machine congruence      of    ζ   such that 

the mapping   g([s])  =  f (s)   is an  i/o-isomorphism from  M   onto   M1.  

 

Proof:  Since   f   is an  i/o- homomorphism, it is also a state homomorphism.   

So by the Theorem 8.4.3.,   g   is a state isomorphism from  M   onto  M1.    

It remains to show that     a,s =  1(g[s], a),  where     is defined in Theorem 9.3.6.   Now  

 1(g[s], a)   =   1 (f (s), a)       (by the definition of   g)   

                              =   (s, a)   (since   f   is an  i/o-homomorphism)  

                              =    a,s (by the definition of   ).  

Therefore      a,s   =    1 (g[s], a).   

Hence   g   is an   i/o-homomorphism from   M   onto  M1. 
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9.3.8. Note:  Let   M  =   (ζ ,  ℐ, O, , )  be a machine.  Define   s  ~  t    s  =  t.    

This is an equivalence relation on    ζ .   

We  write    ζR  =   the set of all equivalence classes.  

The states in any class have identical behavior.  Now let   R    be    ,  and   R   be    .   Now  

ζ.R   is an i/o-machine congruence .    

The system  MR  =  (ζR , ℐ,  O,  R , R)  is an i/o-machine.  

This   MR   is called the reduced machine of the given machine M.   

Here    R (P, a)  =   (P, a)  =  [  (P, a)]  which is defined in Note  8.4.1   and    

R([s], a)   =    ([s], a)   =    (s, a)    which is defined in Theorem  9.3.6.  

If we define   f : ζ    ζR    by  f(s) = [s] ,  then by the Theorem 9.3.6.,  f  is an  i/o-

homomorphism.  This  f   is called the natural i/o- homomorphism.  
 

9.3.9. Theorem: Let   M  =  (ζ ,  ℐ,  O,  ,  )   be an i/o-machine  and    MR   is its reduced 

machine. If    h   is an i/o-homomorphism from M   onto   M1, then there exists an i/o-

homomorphism   g   from   M1 onto   MR   such that   f  =  g  h,  where    f    is the natural i/o-

homomorphism form   M  onto  MR.      

     

 

 

 

 

 
 

Proof: Let   M1 =   (ζ1 , ℐ,  O, 1, 1).  We define   g : R1   as follows:  

Let    s1   ζ1.   Since   h   is onto, there exists   s  ζ such that   h(s) = s1.   

Now we define   g(s1)  =  g(h (s))  =  [s].   

Now we show that g   is well defined.   Let   s1,   t1   ζ1   such that   s1  =  t1.   

Suppose   s1 =  h(s)  and  t1  =  h(t).   Now   s1  =  h(s)  =  h(t)  =  t1.   

Since    h   is an i/o-homomorphism, by Theorem 10.2.7,   s =   f(s)   and   t =  h(t) . Since   

h(s)  =  h(t),  we have    s  =   f(s)  =   h(t)   =   t 

                   s  ~  t    s,  t  P  for some   P   ζR 

                   [s]  =  P  =  [t]    

g 

MR 

f 

M h
 M1 
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                 g(h(s))  =  g(h(t))   

                 g(s1)  =  g(t1).  

Now we show that   f  = g  h.  By the definition of   g,   we have that    

            g(h(s))  =  [s]  =  f(s)   (by the definition of natural homomorphism)     

                               g h  =  f. 

Now we show that   g   is an i/o-homomorphism.   

For this we have to show that   g ( 1  (s1, a) )  =  R (g (s1), a)    

and     1 (s1, a)   =   R (g(s1) , a).   

Since   h   is onto, there exists     s  ζ   such that h(s)  =  s1.   

Now   g ( 1  (s1, a) )  =  g( 1 (h (s), a)   

                                 =  g( h  (  (s, a)))   (since  h  is an i/o-homomorphism)  

                                  =  [  (s, a)]                 (by the definition of   g)  

                                  =     ([s], a)                  (by the definition of    ) 

                                  =    R ([s], a)                (since   R =   ) 

                                  =   R (g(h(s)), a)            (by the definition of  g) 

                                  =   R  (g(s1),  a)             (since  h(s)  = s1) 
 

Now    1 (s1, a)   =    1 (h(s) , a)       (since   h(s) = s1) 

                             =   (s, a)               (since  h  is an i/o-homomorphism) 

                             =   ([s], a)              (by the definition of    ) 

                             =   R ([s], a)           (since    R   =   ) 

                             =   R (g(h(s)), a)    (by the definition of  g) 

                             =   R (g(s1) , a)       (since   h(s)  =  s1) 

Hence   g   is an i/o-homomorphism  such  that  f  =  g h. 

  

9.4  SUMMARY: 

In the beginning of this lesson we explained the concept behavior of the machine with respect 
to a starting state. We explained the state output machine, input-output homomorphism, 
reduced machine.  Few theorems on these concepts were included. 
 

9.5  TECHNICAL TERMS: 

1. Behavior  

Behavior from   ℐ   to   O,  we mean a function   : ℐ* \ {e}  O.  

2. State output machine  
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A State output machine is an i/o-machine M  =  (ζ, ℐ, O, , )   such that   

(s, a) = ((s, a))   for a function      form   ζ   to   O,  it is denoted by    

 M  =  (ζ, ℐ, O, , ). 

3. i/o-homomorphism  

M  =  (ζ, ℐ, O, , )   and   M1 =  (ζ,1 , ℐ , O, 1, 1)    be   i/o - machines. f : ζ   ζ1 is  an i/o-

homomorphism  if  f (  (s, a))  =   1 (f(s), a)  and   (s, a)  =   1 (f(s) , a).   
 

9.6  SELF ASSESSMENT QUESTIONS:  

1. Define i/o homomorphism between two finite state machines. 

2. Give an example of i/o homomorphism. 

3. Define reduced machine. 
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LESSON -10 

REDUCED MACHINE AND ALGORITHM 
 

OBJECTIVES:  
 

 To calculate equivalence classes of states  
 To understand the algorithm for a reduced machine  
 To know the concept reduced machine 

 
STRUCTURE: 

10.1    Introduction 
10.2   Distinguishable states  
10.3   Algorithms for a reduced machine  
10.4.  Construction 
10.5   Summary 
10.6   Technical Terms 
10.7   Self Assessment Questions 
10.8   Suggested Readings 
 
10.1  INTRODUCTION:  

 

In this section we provide algorithm for reduced machine and provide some illustration.  

 

10.2 DISTINGUISHABLE STATES:  
 

10.2.1 Note: (i)  States   s  and  t  of an i/o–machine are said to be distinguishable 

 if   s  t.    

(ii) An input sequence    w  ℐ*  is said to distinguish the states   s   and   t   

 if   s(w)   t(w).  

 

10.2.2.  Example: Consider the machine given by the table.  Now we recollect the definition 

of   s.    

 s(a)  =  (s, a)    for all   aℐ   and   s(wa)  =  (*(s, w), a). 

 

States 
  

0 1 0 1 

0 2 1 1 0 

1 3 0 1 0 

2 2 1 1 1 
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3 2 0 1 1 

4 4 2 1 1 

 

(i) Observe that  0(1) = (0, 1)  

                               = 0  1 = (2, 1) = 2(1).   

Therefore 0, 2 are distinguishable.   

The input “1” distinguishes the states “0” and  “2”.  

(ii) 2(a)  = (2, a)   

          =  (4, a)  =  4(a), for all a  ℐ.    

(iii) 2(11)  =  (*(2, 1), 1)    

             =   ((2, 1), 1) =  (1, 1) =  0,   

4 (11)  =  (*(4, 1), 1)   

              =  ((4, 1), 1)  =  (2, 1)  =  1.  

Hence the input string  “11”  distinguishes the states 2 and 4.  
 

10.2.3.  Note:   (i) Let   k   be a non-negative integer.  Two states   s   and   t  said to be 

  k-equivalent if   s(w)  = t(w)   for all strings    w    of length   k;   

 (ii)  k-equivalence is an equivalence relation;    

(iii)  s =  t   s  and  t  are k-equivalent for all    k.. 
 

10.3 ALGORITHM TO FIND ΖR  OF A GIVEN MACHINE:  
 

10.3.1 Algorithm:  
 

Step-(i):   Determine 1-equivalent classes.  (Here,  s   is  1-equivalent to   t  if    

(s, a)  =  (t, a)   for all   a  ℐ).   

 

Step-(ii): Set   k  = 1.   
 

Step-(iii):  Set   k =  (previous value of k) + 1.   
 

Step-(iv):  By using the (k - 1)–equivalence classes find  k-equivalence classes.   

 [How to find this ?   Suppose  k  2.    Also suppose   s   is   (k -1)–equivalent  to   t.    

 If   si  =  (s, ai),  and   ti  =  (t, ai)   are   (k-1)-equivalent for all   ai  ℐ,  then   s   and  t  are 

k-equivalent.    Otherwise  s  and  t  are  not  k-equivalent].  
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Step-(v):   If   (k-1)-equivalent classes are not identical with k-equivalent classes,  then go to 

step-(iii).  
 

Step-(vi):   Write   ζR  : =  the set of all k-equivalence classes.  
 

Step-(vii):   Stop.  
 

Step-(viii): End.  
 

10.3.2 Problem:   Find   ζR  and hence the reduced machine   MR   for the machine given by 

the table.   

States   

0 1 0 1 

s1 s2 s5 1 0 

s2 s5 s5 1 1 

s3 s1 s8 1 1 

s4 s8 s2 1 0 

s5 s6 s5 1 1 

s6 s1 s5 1 1 

s7 s2 s3 1 0 

s8 s3 s5 1 1 

 

Solution: The input  0  does not distinguish any two states.   

The input  “1” distinguishes the states   s1, s4, s7  from  s2, s3, s5, s6, s8.    

Therefore 1-equivalnet classes are {s1, s4, s7} and   {s2, s3, s5, s6, s8}.   

Now we check whether    s1  and   s4    2-equivalent.  

s2  =  (s1, 0),   s8  =  (s4, 0)   are  1-equivalent, and   

s5  =  (s1, 1),   s2  =  (s4, 1)   are  1-equivalent    

                  s1   and   s4   are   2-equivalent.   

Similarly, s1, s7   are 2-equivalent.   Hence {s1, s4, s7}  is a  2-equivalence class.   

Now we check whether    s2   and   s3   2-equivalent.  s5  =  (s2, 0),  and  s1  =  (s3, 0)   are not 

1-equivalnet.  Therefore   s2   and   s3 are not   2-equivalent.    

Similarly, we observe that    s2, s5   are 2-equivalent; s2, s8   are  2-equivalent;   and   s3,  s6  

are 2-equivalent.   

Therefore, the 2-equivalent classes are {s1, s4, s7}, {s2, s5, s8}, {s3, s6}.   
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In the same way,  we find the 3-equivalent classes.  

The 3-equivalent classes are   {s1, s4},  {s7},  {s2},  {s5, s8}, {s3, s6}.    

The  4-equivalent classes are s1}, {s2},  {s4},  {s5, s8},  {s7},  {s3, s6}.    

The 5-equivalent classes are   {s1}, {s2},  {s3, s6},  {s4},  {s5, s8},  {s7}.  

Since the 4-equivalent classes are identical to the  5-equivlent classes, the process will 

terminate here.    

Therefore     ζR  =  { {s1}, {s2},  {s3, s6},  {s4},  {s5, s8},  {s7}}.    

Now the reduced machine   MR = {ζR, ℐ, O, R, R) is given by   

 

 

 

 
 

 

 

 

10.3.3. Problem: Minimize the number of states for the machine given by the following state 

table.           

 

 

 

 

 

 

 

 

 Solution: We know that   1-equivalence is defined as follows:  s   is   1-equivelnce to  t  if   

(s, a)   =   (t, a)   for all               a  I = {0, 1}.   

Now 1-equivalent classes for the given machine are  

              {s0},  {s1},  {s2, s3, s5, s6},  {s4}. 

Now we  find the 2-equivalent classes. 

Clearly   {s0}, {s1}, {s4}   are  2-equivalent class.   

Now we check whether   s2,  s3   2-equivalent. 

(s2, 0)  =  s2,     (s3, 0)  =  s1,       (s2, 1)  =  s2,   (s3, 1)  =  s1,   and   s2, s1   are  

States R =   R =   
0 1 0 1 

{s1} {s2} {s5, s8} 1 0 
{s2} {s5, s8} {s5, s8} 1 1 

{s3, s6} {s1} {s5, s8} 1 1 
{s4} {s5, s8} {s2} 1 0 

{s5, s8} {s3, s6} {s5, s8} 1 1 
{s7} {s2} {s3, s6} 1 0 

 

States   
0 1 0 1 

s0 s0 s2 0 0 
s1 s2 s5 1 0 
s2 s2 s2 1 1 
s3 s1 s1 1 1 
s4 s2 s3 0 1 
s5 s4 s5 1 1 
s6 s2 s6 1 1 
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States     
0 1 0 1 

{s0} {s0} {s2, s6} 0 0 
{s1} {s2, s6} {s5} 1 0 

{s2, s6} {s2, s6} {s2, s6} 1 1 
{s3} {s1} {s1} 1 1 
{s4} {s2, s6} {s3} 0 1 
{s5} {s4} {s5} 1 1 

 

not  1-equivalent.   

Therefore   s2,  s3   are not 2-equivalent. 

 Now we check whether    s2, s5  2-equivalent. 

 (s2, 0)  =  s2,   (s5, 0)  =  s4,   (s2, 1)  =  s2,   (s5, 1)  =  s5,  and   s2,  s4  are  

not  1-equivalent.   

Therefore   s2, s5   are not  2-equivalent. 

Next we verify whether   s2, s6  2-equivalent.  

(s2, 0)  =  s2,  (s2, 1)  =  s2,  (s6, 0)  =  s2,  (s6, 1)  =  s6,  and  s2, s6 are  1-equivalent.   

Therefore  s2,  s6  are  2-equivalent.  Hence the  2-equivalent classes are    

{s0},  {s1},  {s2, s6},  {s3}, {s4}, {s5}. 

Now we  find the 3-equivalence classes. 

We check whether  s2, s6   3-equivalent. 

(s2, 0)  =  s2, (s6, 0) = s2, (s2, 1) = s2, (s6, 1) = s6.  Therefore s2, s6 are 3-equivalent.   

Hence the 3-equivalent classes are   {s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.   

Observe that  the 2-equivalent classes and 3-equivalent classes are identical.   

The reduced machine is given in the table.  

 

 

 

 

 

 

 

 

10.4.  Construction 
 

10.4.1.   Note: To give an electronic construction of an i/o-machine, the state table must be 

described in terms of Boolean functions.  To do this  

(i) Code the input and output alphabets in binary   

(ii) Code the set of states in binary   

(iii) Describe the output and next state functions as Boolean functions.   
 

This procedure was illustrated in the following problem.  
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Output z1 z2  State x1 x2 

a 0 0  0 0 0 

b 0 1  1 0 1 

c 1 0  2 1 0 

d 1 1  3 1 1 

Table 1  Table  2 

 

States   
0 1 0 1 

0 1 2 c d 
1 2 0 a b 
2 2 3 a b 
3 1 0 c d 

 

States Input   
x1 x2 y 1

1x  1
2x  z1 z2 

0 0 0 0 1 1 0 
0 0 1 1 0 1 1 
0 1 0 1 0 0 0 
0 1 1 0 0 0 1 
1 0 0 1 0 0 0 
1 0 1 1 1 0 1 
1 1 0 0 1 1 0 
1 1 1 0 0 1 1 

Table III 
 

10.4.2. Problem:  Describe the given machine in terms of Boolean functions. 

 

 

 

 

 
 

Solution: We solve this in three parts  (i),  (ii), and   (iii).   

(i) First we code the input and output alphabet:  

 

 

 

 

 

 

 

For this example   ℐ   =  {0, 1} and   O  =  {a, b, c, d}.  

The input alphabet is already in binary.    

Since   O   contains four elements, we may use  00, 01, 10, 11.    

So label   a, b, c, d   with 00, 01, 10, 11   respectively.   

Call the two’s digit   z1   and the units digit   z2 .  Observe table-I.  

     (ii) Now we code the set of states.  Here    ζ   =   {0, 1, 2, 3}.    

Label  0,  1,  2,  3   with   00,  01,  10,  11.    

Call the two’s digit of this representation as  x1   and units digit  as  x2.   

Observe the table-II.  

 (iii)  Now we describe the output and next state functions as Boolean functions.  

Suppose  1
1x  represents the two’s digit and  1

2x   represents the  

 

 

 

 

 

 



 
Advanced Discrete Mathematics                    10.7                 Reduced machine and Algorithm 

units digit  of the next state.   

The symbol y represents the input.  Then we have table-III.  

From the table, we can observe that 1
1x , 1

2x , z1 and z2 are functions of   x1, x2   and   y.   Now it 

is clear that   

  1
1x   =  1x 2x y 1x x2 y x1 2x y x1 2x y 

 1
2x   =   1x 2x y x1 2x yx1x2 y . 

   z1  =  1x 2x y  1x 2x yx1x2 y x1x2y 

   z2  =  1x 2x y 1x x2yx1 2x yx1x2y. 
 

10.4.3.   Note:  Consider the  Problem 10.4.2.   A gating network can represent the functions   

1
1x , 1

2x , z1  and   z2   described.  Now we  draw the gating network. 

 

(i) The functions   z1  and  z2  are available as out put from getting network. 
 

(ii) Since the next state is a function of its previous state the functions   1
1x   and  1

2x   are 

stored in a delay and are fed along with the input into the machine at the next time period. 
 

10.4.4. Problem: Draw the getting network for the machine given in the Problem 10.4.2. 

Solution: In the Problem  10.4.2.,  we obtained representation of 1
1x , 1

2x , z1  and  z2   in terms 

of   x1, x2   and   y.   

The first input to the getting network is   x1, x2, y.   

The second input to the getting network is   1
1x , 1

2x , y.   

(Here   1
1x ,  1

2x    are first outputs).   

The outputs   1
1x , 1

2x    are stored in a delay and fed into the machine as input for the next 

period. 

The outline of the getting network is given below. 

We call this getting network as ‘realization’ of the given machine. 

Gating network with input x1, x2 
and y; and output 1

1x , 1
2x ,  z1,  z2. 

x1 

x2 

y 

z1 

z2 

1
2x  

1
1x  

1
1x  

1
2x  

DELAY  

DELAY  

x1 

x2 
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10.4.5. Note:  In the above  10.4.4., we obtained a realization for the given machine.  If one 

wants to find the further simplified electronic getting network (that is, a more simplified 

realization), first we have to use Quine–Mc Cluskey minimization procedure for the 

functions  1
1x , 1

2x , z1 and z2 and then we have to draw the realization. 
 

10.5  SUMMARY: 

In this lesson, we have learned to find the equivalence classes of the set of all states and 
hence provided an algorithm to find its reduced machine.  Also some problems related to the 
reduced machine were presented. 
 

10.6  TECHNICAL TERMS: 

Distinguishable states 
States   s  and  t  of an i/o–machine are said to be distinguishable  if   s  t.    
 

k-equivalent states 
Two states   s   and   t  said to be  k-equivalent if   s(w)  = t(w)   for all strings    w    of 
length   k; 
 

Algorithms for set of States of the reduced machine  
(Algorithm 10.3.1.) 
 
 

10.7  SELF ASSESSMENT QUESTIONS: 
 

1. Minimize the number of states for the machine given by the following state table.          
 
 
 
 
 
 
 
 
 
 
 
Ans:  We know that   1-equivalence is defined as follows:   

s   is   1-equivelnce to  t  if   (s, a)   =   (t, a)   for all  a  ℐ = {0, 1}.   

Step 1:  Now 1-equivalent classes for the given machine are  

           {s0},  {s1},  {s2, s3, s5, s6},  {s4}.  

Step 2:  Now we  find the 2-equivalent classes.  

Clearly   {s0}, {s1}, {s4}   are  2-equivalent class.    

Now we check whether   s2,  s3   2-equivalent.   

(s2, 0)  =  s2,     (s3, 0)  =  s1,   (s2, 1)  =  s2,  (s3, 1)  =  s1,   and    

States   
0 1 0 1 

s0 s0 s2 0 0 
s1 s2 s5 1 0 
s2 s2 s2 1 1 
s3 s1 s1 1 1 
s4 s2 s3 0 1 
s5 s4 s5 1 1 
s6 s2 s6 1 1 
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States     
0 1 0 1 

{s0} {s0} {s2, s6} 0 0 
{s1} {s2, s6} {s5} 1 0 

{s2, s6} {s2, s6} {s2, s6} 1 1 
{s3} {s1} {s1} 1 1 
{s4} {s2, s6} {s3} 0 1 
{s5} {s4} {s5} 1 1 

 

s2, s1   are not  1-equivalent.    

Therefore   s2,  s3   are not 2-equivalent.   

Now we check whether    s2, s5  2-equivalent.  

(s2, 0)  =  s2,   (s5, 0)  =  s4,   (s2, 1)  =  s2,   (s5, 1)  =  s5,  and   

 s2,  s4  are not  1-equivalent.    

Therefore   s2, s5   are not  2-equivalent.  

Next we verify whether   s2, s6  2-equivalent.   

(s2, 0)  =  s2,  (s2, 1)  =  s2,  (s6, 0)  =  s2,  (s6, 1)  =  s6,  and  s2, s6 are  1-equivalent.   

Therefore  s2,  s6  are  2-equivalent.   

Hence the  2-equivalent classes are    {s0},  {s1},  {s2, s6},  {s3}, {s4}, {s5}. 

Step 3: Now we  find the 3-equivalence classes.  

We check whether  s2, s6   3-equivalent.  

(s2, 0)  =  s2, (s6, 0) = s2, (s2, 1) = s2, (s6, 1) = s6.   

Therefore s2, s6 are 3-equivalent.    

Hence the 3-equivalent classes are   {s0}, {s1}, {s2, s6}, {s3}, {s4}, {s5}.    

Observe that  the 2-equivalent classes and 3-equivalent classes are identical.   

The reduced machine is given in the table.  
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LESSON -11 

SOME PROPERTIES OF LATTICES 
 
OBJECTIVES: 
 
 To know the system Lattice. 
 To understand the concepts Algebraic Lattice, Ordered Lattice. 
 To identify different types of relations. 
 To Learn to draw the diagrams related to lattices.  
 To have proper understanding of different properties.  
 To develop skills in solving the problems. 
 

STRUCTURE: 

11.1   Introduction 
11.2  Partial Order relations, PO sets, Hasse Diagrams. 
11.3.  Lattices 
11.4.  Some more concepts in Lattice theory. 
11.5   Summary 
11.6  Technical Terms 
11.7  Self Assessment Questions 
11.8  Suggested Readings 
 
11.1.  Introduction  
The present day concept of lattice was first considered by  E. Schroder  about the year 1890.  
At  the same time,  R. Dedekind developed a similar concept in his work on groups and 
ideals.  Dedekind defined modular and distributive lattices, which are different types of 
lattices. The lattice theory developed rapidly around 1930,  when  G.  Birkhoff started his 
contribution to the lattice theory. 
 
11.2.  Partial Order relations, PO sets, Hasse Diagrams. 
 
The concept ‘relation’ plays an important role in algebraic structures. Different types of 
relations which play a vital role are: equivalence relations, functions, totally ordered 
relations, partially order relations, etc.  
 
11.2.1.  Definitions:  Let   A   and   B   be sets.   
 
 (i).  A relation   R   from   A   to   B  is a subset of   A  B,  the Cartesian product of    A    
and    B.   
 
  (ii). Relations from   A   to   A   are called relations on   A.  
 
   (iii).  If   (a, b)  R,   we write   aRb   and say that “a  is in relation R to  b”.   
 
  (iv)  If we consider a set   A   together with a relation  R, then we write    (A, R). 
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 11.2.2. Definitions:  Let   R   be a relation on a set   A.  Then 
 
  (i).   R   is said to be a  reflexive relation  if    
                     aRa   for all   a  A. 
 
  (ii)    R   is said to be a  symmetric relation  if    
             aRb     bRa  for all   a, b  A. 
 
   (iii)   R   is said to be an  antisymmetric relation  if   
                aRb   and   bRa        a  =  b   for all   a, b  A. 
 
   (iv)   R   is said to be a  transitive relation  if  
              aRb and bRc      aRc   for all    a, b, c  A. 
 
  (v)  A relation   R   is said to be an equivalence relation on   A   if it is  reflexive, 
symmetric, and transitive.    
 
In this case,   for any   a  A, we write    [a] : =  {b  A  /   aRb}  and this set is called the  
equivalence class of   a. 
 
  (vi).  A reflexive, antisymmetric, and transitive relation   R   on a set   A   is called a partial 
order relation.  In this case,   (A, R)   is called a partially ordered set (or POset, in short). 
 
 11.2.3. Note:  (i)  In case of partially ordered relation,  we may write      or      or      
instead of   R.   
 
  (ii)  Now let us write      instead of   R.  
 
  (iii)  Partially ordered finite sets  (A, )  can be graphically represented by Hasse diagrams.   
 
Here the elements of   A   are represented as points on a plane.   

If    b    a    and   b   a,   then we write   b < a. 

If    b < a   and there is no   c   in  A  such that   b < c < a, then we say that    a  covers  b. 

If    a   covers   b,   then  we mark a point representing    

a   above the point for  b,  and connect the points of    a   and   b   by a line segment.  

 
11.2.4. Examples: (i)  The fact   a   covers  b  is illustrated in the following Figures:    Fig-1 
and Fig-2.   
 
  (ii)  Now consider the Fig - 2.   
In this,  we can observe the following facts:    
D  covers  E;     B  covers  C;     F  covers  C;    A  covers  F.  Also note that    B    joined to   
E   by a sequence of line segments all going downwards.   
So we have    B    E. 
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                Fig - 1                                                 Fig - 2 
 
 

  11.2.5. Examples:  (i)  The Hasse diagram of the POset  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (P({1, 2, 3}), )  is shown in Figure-3,  where   P(S)  denotes the power set of   S  (that is, 
the set of all subsets  of   S). 
 
   (ii)  The Hasse diagram of   ({1, 2, 3, 4, 5}, ),   where     means  usual “less than or equal 
to”   is shown in figure - 4.   
  
 (iii) Write  A  =  {a, b, c, d}, and  

R  =  {(a,a),  (b,b),  (c,c),  (d,d),  (b,a),  (c,a),  (d,a),  (d,c)}. 

 
 
 
 
 
 
 
 
 
 
 
 

 

{1, 2, 3} 

{2, 3} {1, 2} {1, 3} 

{1} 
{2} {3} 

1 

2 

3 

4 

5 

Figure 3 Figure 4     

d 

a 

b 
c 

Figure  5 

a 

b 

a covers b 

A 

B F 

C 

D 

E 
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Now it is easy to verify that  R  is a partial order on the set  A. In this example we take   aRb   

as   a     b. 

The diagram for this POset is given in figure - 5. 
 

 11.2.6. Definition:   A partial order relation      on   A   is said to be a linear order if for 

each   a, b  A   either   a    b   or   b    a  holds.   

In this case,   (A, )  is called a linearly ordered set or a chain or a totally ordered set. 

 

11.2.7. Examples:  (i)  The partially ordered set   
 ({1, 2, 3, 4, 5},  )   is a chain. 
 
  (ii) The partially ordered set   (P({1, 2, 3}), )  is not a chain.   
 
11.2.8. Definitions: (i).  Let    R   be  a relation from   A  to  B. 

Then  we define a relation  R-1  from B to A  by    

           (a, b)    R-1    (b, a)    R. 

This relation R-1 is called the inverse relation (or transpose relation) of   R.   

In other words, if  (A, )  is a partially ordered set, then  (A, )  is also a partially ordered set,  

and       is the inverse relation to   .. 

 
(ii)  Let   (A, )   be a POset,  and  B   A.  We say that  an element   a   in   A  is said to be  a 

greatest element if all other elements are smaller than  a  (that is,   x    a    for all   x  A). 

(iii)  An element   b   in   A   is said to be  a smallest element of   A   if    b    x   for all   x  

A.   

(iv)  An element   c   in   A   is said to be  a maximal element of   A   if  “no element is bigger 

than  c ”  (that is,    c    x        c  =  x   for all   x  A). 

(v)    An element   d    A   is said to be  a minimal element of   A   

if     x    d        x = d   for all   x  A.   

(vi)  a  A   is called an upper bound of    B  if   b    a   for all   b  B. 

(vii)  a  A   is called a lower bound of   B  if  a    b    for all   b  B 

(viii) The greatest amongst the lower bounds of   B, whenever it exists, is called the infimum 
of   B,  and is denoted by  inf   B. 
 
(ix) The least upper bound of   B,  whenever it exists, is called the supremum of    B,  and is 

denoted by  sup   B. 

(x).  We write    inf (a1, …, an)   and sup (a1, …, an)    instead of     inf  {a1, …, an}  and   

sup {a1, …, an},   respectively. 
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11.2.9. Note:  Let   (A, )   be a PO set.  Then we have the following: 
 
   (i)   A  has at most one greatest and one smallest element.  
 
   (ii) There may be none, one, or several maximal (or minimal) elements in a POset.   
 
   (iii)  Every greatest element is maximal. 
 
   (iv)  Every smallest element is minimal. 
 

11.2.10. Examples:  Consider the POset    (A, )  =  (ℝ, )  where   ℝ   is the set of real 
numbers  and  "  "  is the usual order on the set of all real numbers.   
 
(i)  Write   B  =   the interval  [0, 3).  Then it is clear that    inf B  =  0    and    sup B  =  3.   
 
(ii)  Write    C  =  the interval  (0, 3].  Then it is clear that    inf C = 0    and    sup C  = 3. 
 
(iii)  From (i) and (ii), we can understand that in general, the infimum (or supremum) of  a set  
X   may or may not be in the set   X.   
 

(iv)  Consider   D  = ℕ,  the set of natural numbers. 
It is clear that    inf D  = 1,   but    sup D    does not exist. 
 
11.2.11. Zorn’s lemma: If   (A, )  is a poset such that every chain of elements in   A   has an 
upper bound in   A,  then  A   has at least one maximal element. 
 
11.3.  LATTICES: 
 
11.3.1. Definition: (i).  A poset  (L, )  is said to be a lattice (or lattice ordered set) if 
supremum of    x   and   y;   and  infimum of   x  and  y   exist for every pair    x, y     L. 
 
11.3.2. Note: (i)     Every chain (A, ) is a lattice ordered set [If a, b are in A, then since A is 

a chain, we have that  a  b or b  a.  If  a  b then b is the sup of a, b; and a is the inf. of a,b.  

If  b  a then a is the sup of a, b; and b is the inf. of a,b.  Hence, (A, ) is a lattice ordered 

set]. 

(ii). Let  (L, )  be a lattice ordered set;  and    

x,   y   L.  Then we have the following: 

  x    y        sup (x, y)  =  y         inf  (x, y)  =  x. 

 

11.3.3.  Definition:  An (algebraic) lattice   (L, , )   is a set   L   with two binary 
operations    (called as  meet or intersection or product) and     (called as join or union or 
sum)  which satisfy the following laws (for all   x, y, z    L): 
 
(L1)  Commutative laws: 
x   y  =  y  x,  and    x  y  =  y  x. 
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(L2)  Associative laws: 
x  (y  z)  =  (x  y)  z,   and     x  (y  z)  =   (x  y)  z. 
 
(L3) Absorption Laws: 
 x  (x  y)  =  x;     and    x  (x  y)  =  x. 
 
11.3.4. Note:  Let    (L, , )   be an algebraic lattice  and  x  L. 
 
(i)   x  x   =  x  (x  (x  x))  (by absorption law) 

                  =   x  (x  (y)),   where   y  =  x  x  

                  =   x   (by absorption law). 

 
(ii)   x  x   =  x  (x  (x  x ))  (by absorption law) 

                   =   x  (x  (y))    where    y  =  x  x  

                   =   x     (by absorption law) 

 
(iii)  From (i)  and (ii), we got the following axioms: 
 
 (L4)   Idempotent laws: 

 x  x   =   x,    and    x  x  =  x. 

(iv).  Sometimes we read   x  y   and   x  y   as “x  vee  y”    and    “x  wedge  y”.   

 
11.3.5. Remark:  Suppose   (L, )  be an algebraic lattice.  Now we verify that  

x   y   =   y       x     y   =   x    for any     x,  y    L. 

 

  (i)  Suppose   x   y  =  y.  Then    

x     y  =  x     (x   y)   (by the supposition) 

             =   x   (by obsorbtion law) 
   

   (ii)  Suppose   x   y  =  x.  Then   

 x   y  =  (x    y)     y    (by supposition)   

            =   y    (y   x )   (by commutative law) 

            =  y                        (by obsorption law). 

 
   (iii)  By (i)  and (ii), we have that   x   y   =   y       x     y   =   x. 
 
1.3.6.  Theorem: (i) Let   (L, )   be a lattice ordered set.  If we define  

x  y   : =   inf (x, y),    and     x  y  : =  sup (x, y) 

Then   (L, , )   is an algebraic lattice. 
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(ii)  Let   (L, , )   be an algebraic lattice.  If  we define    x    y        x  y  =  x, 

then   (L, )   is a lattice ordered set. 

 

 Proof:  Part-(i):   Let   (L, )   be a lattice ordered set  and     x, y, z    L.   

Now we verify the axioms in  (L1).  (Commutative laws): 

      x   y   =   inf (x, y)  =   inf (y, x)   =   y  x, 

      x  y   =   sup (x, y)  =  sup (y, x)  =  y  x. 

 

Now we verify the axioms in  (L2). (Associative laws): 

        x  (y  z)   =   x  inf (y, z)  

                            =   inf (x, inf (y, z))   =   inf  (x, y, z) 

                            =   inf (inf(x, y), z)    =   inf (x, y)    z   

                            =  (x  y)   z. 

Similarly, we have that  

          x    (y  z)  =   (x  y)    z 

Now we verify the axioms in   (L3).  (Absorption laws): 

   x  (x  y)   =   x  sup (x, y)  

                        =   inf  (x, sup (x, y))  =  x 

  x  (x  y)  =  x  inf (x, y)  

                     =  sup (x, inf  (x, y))   =  x. 

 
Part-(ii):  Let   (L, , )   be an algebraic lattice.  Let    x, y, z    L. 
 
Step-(i): In this step we prove that  (L, )  is a partially ordered set. 
By idempotent laws,  we have that  

x    x  =  x    and    x    x  =  x   and  so    x    x. 

This shows that        is reflexive. 

Now we verify the antisymmetric property. 

For this,  suppose   x    y   and   y    x. 

           x    y  =  x   and   y    x  =  y 

           x  =  x   y   =   y  x   (by commutative law)  

                                    =   y   

           x  =  y. 

This shows that       is  antisymmetric. 

Now we verify the transitive property. 
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For this,  suppose    x    y   and   y    z. 

                x    y  =  x    and   y    z   =   y 

                x   =   x    y   =   x    (y    z)   

                         =   (x    y)    z    (by associative law)   

                         =   x    z. 

               x  =  x    z.           x      z . 

This shows that        is transitive. 

So we can conclude that   (L, )   is a poset. 
 
Step-(ii):  In this step we prove that    sup (x, y)  =  x    y. 

By Remark 11.3.5., we have that 

x    y         x   y   =   y          x     y   =   x    …. (i). 

Let   x, y  L.   Then    x    (x    y)   =   x        x       x    y. 

Similarly    y     x    y.  Therefore    x    y   is an upper bound for   {x, y}. 

Suppose    z  L   be an upper bound for   {x, y}.  Then   x    z   and   y    z. 

By (i),  we get that    x    z   =   z    and    y    z  =   z. 

Now     (x    y)    z   =   x    (y    z)  (by associative law) 

                                     =    x    z   (by (i)) 

                                     =    z .   

                       x    y       z.   

This shows that   x  y   is the least upper bound for   x   and y,   and 

 hence    sup (x, y)   =   x    y.   

 
Step-(iii):  In this step, we prove that    inf (x, y)    =   x    y.   

Now      x     (x    y)   =   x        x    y     x . 

Similarly   y    (x    y)  =  y  (y  x)     (by commutative law) 

                                          =  y   (by absorption law). 

                  x   y    y.  

This shows that    x  y    is a lower bound for  {x, y}.  

Suppose    z  L   be a lower bound for  {x, y}.   

Then    z    x   and    z    y. 

By (i),  we get that    x    z  =  z    and    y      z  =  z. 

Now   (x    y)    z   =   x    (y    z)  (by associative law) 
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                                   =    x    z   =   z .   

                 z     x    y .   

This shows that    x    y   is the greatest lower bound for  x and   y,   and  

hence     inf (x, y)   =   x    y.   

 
Step-(iv):   From the above steps (i) to (iii), we conclude that   (L, )  is a lattice ordered set. 
 
11.3.7. Remark:  (i)  From the Theorem 11.3.6., it is clear that there exists a one-to-one 
relationship between lattice ordered sets and algebraic lattices. In other words, the concepts 
"lattice ordered set" and "algebraic lattice" are equivalent.   So we can  use the term lattice for 
both concepts:  lattice ordered sets and algebraic lattices.   
 
  (ii)  We write  |L|  to denote the number of elements of L. 
 
   (iii)  If    N    is a subset of a POset,  then   VxN   x   and   xN x  denote the supremum and 

infimum of  N, respectively, whenever they exist.   

We also say that the supremum of   N   is the join of all elements of   N   and  the infimum is 
the meet of all elements of   N. 
 
11.4.  SOME MORE CONCEPTS IN LATTICE THEORY: 
 
11.4.1. Duality Principal (or Principle of Duality): 
Any “formula” involving the binary operations      and      which is valid in any lattice    
(L, , )   remains valid if we replace      by   ,   and    by     everywhere in the formula.  
This process of replacing is called dualyzing. 
 
11.4.2. Definitions: If a lattice   L   contains a smallest (greatest, respectively) element with 
respect to  ,  then this uniquely determined element is called the zero element (unit element, 
respectively).  The zero element is denoted by  0,  and the unit element is denoted by  1.  The 
elements  0  and  1  are called universal bounds.  If the elements  0  and  1  exist,  then we say 
that the lattice   L  is a bounded lattice. 
 
11.4.3. Note:  If a lattice   L  is bounded  (by  0  and  1), then  every   x   in   L   satisfies   0    

x    1,     0  x  =  0,  0  x   =   x,    1  x  =  x,   and   1  x  =  1. 
 

11.4.4. Problem:   Suppose that   L   is a lattice.  Show that 
 
   (i)   If   x1,  x2,  …xn    L,   then   x1 x2… xn  L.   

Also    x1 x2… xn  L. 

 
   (ii) If   L   is a  finite lattice,  then    L   is bounded. 
 
  Solution: (i) Let   x1,  x2,  …xn    L.   

We prove that   x1 x2… xn    L,  by using the mathematical induction. 
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If   n  =  2,  then since   L   is a lattice,  we get that    x1 x2    L.   

Now assume the induction hypothesis that   

x1,  x2,  …xn-1    L      x1 x2… xn-1  L. 

Suppose that   x1,  x2,  …xn    L 

            x1 x2… xn-1  L   and   xn  L    (by induction hypothesis) 

           x1 x2… xn-1 xn   L                 (by the definition of lattice). 

By mathematical induction,  we conclude that           

          x1 x2… xn  L   for any integer   n   and   x1,  x2,  …xn    L.   

In a similar way,  we can prove that   x1 x2… xn  L. 
 

    (ii). Suppose that   L  is a finite lattice with   m   elements.   

Then we can take   L  =  { x1,  x2,  …xm}.   

By (i),    x1 x2… xm ,  x1 x2… xm    L.   

It is clear that   x1 x2… xm    xi   for  1    i    m   and    

xi    x1 x2… xm  for   1    i    m. 

Therefore    x1 x2… xm   is an upper bound for   L   and x1 x2… xm   is a lower 

bound for   L.  Therefore   L   is a bounded lattice. 

11.4.5.  Lemma:  In every lattice   L   the operations      and    are isotone   (that is,    y    

z        x   y      x   z,   and  x  y      x  z). 

 Proof:  Suppose that  y    z.   
 
Part-(i):  We know that    y    z       y    z  =  y. 

So we have that   

x   y   =   (x  x)  (y  z)    (by idempotent law)   

            =  (x  y)  (x  z)      (by associative and commutative laws) 

             x  y       x   z. 

 
Part-(ii):   We know that   y    z       y     z  =  z. 

Now  (x  y)  (x  z)  =  (x  x)  (y  z)  (by associative and commutative laws) 

                        =   x  (y  z)   (by idempotent law)  

                        =   x  z. 

This shows that    x  y     x   z.   The proof is complete. 
 

11.4.6.  Theorem:  Let   L   be a lattice,   and   x, y, z   L. 
Then   L  satisfy the following distributive inequalities: 
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(i)    x    (y  z)      (x  y)    (x  z) 

(ii)   x    (y  z)      (x  y)    (x  z) 

 

 Proof: Part-(i):  We know that    x    y      x,   and   x    y        y      y    z.    

So  x y   is a lower bound for  x  and   y  z          x    y      x    (y    z)    …  (iii) 

Now   x   z     x   and   x   z      z     y  z   

   x   z   is a lower bound for   x   and   y  z     x   z      x    (y  z)         …  (iv) 

From (iii) and (iv),  we have that  x  (y  z) is an upper bound for    x   y   and   x    z.   

        (x    y)    (x    z)         x    (y    z).  

The proof is complete for (i). 

 

Part-(ii): We know that   x    x  y    and   x      x  z 

        x   is a lower bound for   x  y  and   x  z    x     (x  y)  (x  z)          … (v) 

we know that    y  z      y      x  y   and    y  z      y     x  z 

        y  z    is a lower bound for   x  y   and   x  z 

        y  z      (x  y)    (x  z)          … (vi)    

From (v) and (vi), we have that  (x  y)    (x  z)   is an upper bound for   x   and   y  z. 

         x  (y   z)      (x  y)    (x  z). 

The proof is complete. 

11.4.7. Definition: A subset  S  of a lattice   L   is called a sublattice of   L   if   S   is a lattice 

with respect to the restriction of      and      from   L   to   S. 

It is clear that  a subset   S   of   L   is a sublattice of the lattice L      S   is “closed” with 

respect to      and   (that is,   s1,  s2  S      s1  s2  S   and   s1  s2  S).   

11.4.8.  Definition:  For two elements   x,  y   in a lattice  L  (with   x    y),  we define  the 

interval  as follows:  [x, y]  : =   {a    L   /   x    a    y}.  

Note that this interval is a sublattice of L. 
 

11.5  SUMMARY:   
 
Several properties of lattices were presented.  The definitions of some important concepts 
related to Lattice theory namely  Partial order relation, partial ordered set, Ordered lattice set, 
algebraic lattice, sublattice, universal bounds were included.  Some Lemmas, and theorems 
were also proved.  It is proved that every ordered lattice may be turned into algebraic lattice, 
and vice-versa.  Some examples were presented to understand the concepts in a better way by 
the reader. 
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11.6  TECHNICAL TERMS: 
 
1. Partial order relation. 
A reflexive, antisymmetric, and transitive relation   R   on a set   A   is called a partial order 
relation.  
 
2. Partially ordered set (or POset, in short). 
 (A, R)   is called a partially ordered set (or POset) if R is a partial order relation on A. 

 
3.  Hasse Diagram  
(Refer Note 11.2.3., and Example 11.2.5) 
 
4.  Zorn’s lemma. 
If   (A, )  is a poset such that every chain of elements in   A   has an upper bound in   A,  
then  A   has at least one maximal element. 
 
5.  Lattice (or Lattice ordered set) 
A poset  (L, )  is said to be a lattice (or lattice ordered set) if supremum of    x   and   y;   and  

infimum of    x   and   y    exist for every pair    x, y     L. 

 

6.  Duality Principal (or Principle of Duality): 
Any “formula” involving the binary operations      and      which is valid in any lattice    
(L, , )   remains valid if we replace      by   ,   and    by     everywhere in the formula.  
This process of replacing is called dualyzing. 
 
7.  Sublattice 
A subset  S  of a lattice   L   is called a sublattice of   L   if   S   is a lattice with respect to the 
restriction of      and      from   L   to   S. 

 
11.7  SELF ASSESSMENT QUESTIONS: 
 
1. Define partial ordered set, and give an example. 
 

2. What do you mean by Hasse Diagram, and give an example. 
 

3. What do you mean by a chain. Show that every chain is a lattice. 
 

4. Prove that every ordered lattice set can be turned in to an algebraic lattice. 
 

5. Prove that every algebraic lattice can be turned in to an ordered lattice set. 
 

6. Determine all the partial orders and their Hasse diagrams on the set    L = {a, b}.   Which 
of them are chains ? 
 

[Ans: The possible partial orders on   L  =  {a, b}   are  

 

 

 

     Fig-1          Fig-2                  Fig - 3 

 The POsets in Fig -1 and fig-2 are chains. 
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Fig -10 Fig -11 

The POset in fig - 3 is not a chian (because a ≰ b and b ≰ a).] 

7. Determine all the partial orders and their Hasse diagrams on the set    L  =  {a, b, c}.  
Which of them are chains? 
 

[Ans:  The required partial orders are given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Among all these  partial orders, the partial orders given  in Figures 1 to 6 are chains.] 
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LESSON -12 

SOME EXAMPLES OF LATTICES, AND 
HOMOMORPHISMS 

 
 OBJECTIVE: 
 
 To know different examples of Lattices. 
 To understand the concept: product of lattices. 
 To Learn to draw the diagrams of lattices. 
 To have proper understanding of different types of homomorphisms. 
 

STRUCTURE 
 

12.1   Introduction 
12.2   Some Examples of Lattices 
12.3.  Homomorphisms 
12.4   Summary  
12.5   Technical Terms  
12.6   Self Assessment Questions 
12.7   Suggested Readings 
 
12.1.  INTRODUCTION  

In the previous lesson, we came to know the fundamental definitions of lattices, and also 
some important theorems.   In this Lesson, we present several important examples for better 
understanding of the concepts. Later different types of homomorphisms were explained.   

 
12.2.   SOME EXAMPLES OF LATTICES: 
 
In this section, we include some important examples of lattices. 
 

12.2.1.  Examples:  (i).  Consider   ℕ   =   the set of all natural numbers.   

Define   a    b      a   divides   b,  for all  a,  b    ℕ.  Then   (ℕ, )   is a POset. 

For any   x,  y    ℕ,   we write  x y  =  gcd {x, y}   and   x y  =  lcm {x, y}.   

Then  (ℕ, )  is a lattice.  Here 1  is the zero element.   

The greatest element does not exist. 
 
(ii). Let   A   be a set.  Consider   ℘(A)  =  the power set of   A, the set of all subsets of A.   

(℘(A),  )  is a POset  (where      is the set inclusion).   

For any    X,  Y    ℘(A),  we write X Y   =  X Y    and    X   Y  =  X Y.   

Then   (℘(A),  )   is a lattice.   
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In this lattice,      is the smallest element and   A   is the greatest element. 
 
(iii)  Let   V   be a vector space.  Write  S(V)  =  the set of all subspaces of  V.   

(S(V),  )  is a POset  where       is the set inclusion.   

For  U,  W    S(V),  we write U   W  =  U W   and    U   W  =  U  +  W.   

Then   (S(V),  )   is a lattice. 

In this lattice,  the subspace  (0)  is the smallest element and   V  is the greatest element. 
 

 

12.2.2. Definition:   Let  {Li  /  i  I}  be a collection of lattices with   0   and   1.   

Write   A  =  
Ii

iL ,  the Cartesian product of sets.  Let   {ai},  {bi}    A.   

Define   {ai}    {bi}       ai    bi  for all  i    I.    

With this definition,  (A,  )   is a POset.   

Define  {ai}   {bi}  =  {ci}   and   {ai} {bi}  =  {di}  where  

 ci  =  ai bi   and   di  =  ai  bi   for all   i    I.   

Then  (A, )  is a lattice.   

Consider the elements   {xi}  where   xi  =  0   in   Li  for all   i   and  {yi}  where   yi  =  1  in   

Li   for all   i.    

Then  {xi}  is the smallest element in   A,  and   {yi}   is the greatest element in   A.    

Here we may write  {xi}  as  (0, 0, …0, …)   and   {yi}   as  (1, 1, … 1, …).   

Hence    (A, )   is a lattice with   0   and   1.  This lattice is called as product lattice. 

 
 12.2.3. Examples: Now we provide the Hasse diagrams of all the lattices with   n   elements 

where   1   n  6.  

The symbol  n
iV   denotes the   ith   lattice with   n   elements. 
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12.2.4. Examples:  (i).  In the following tables, we provide the operation tables for the lattice  

V4
5.  This table, provides the information regarding     x  y   and   x  y   for all   x   and   y  

of the lattice.   
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1cba0

cc0a0

b0b00

aa0a0

00000

1cba0

1

c

b

a

0



               

11111

1c1cc

11b1b

1c1aa

1cba0

1cba0

1

c

b

a

0



 

 
  The tables  given in above are called  as operation tables. 
 
 (ii).  Let   V   be a vector space.   

Write   S(V)  =  the set of all subspaces of   V.   

L(V)  =  ℘(V)  =  the  set of all subsets of   V.   

Now   (S(V),  )   and   (L(V),  )  are two lattices where       is the set inclusion.  (Refer  

Example  12.2.1 (ii)  and  (iii)). 

 
 (iii).  S(V)     L(V)   and   (S(V),  )   is a subPOset of   (L(V),  ). 
 
(iv).  Suppose   V  is a vector space over the field  ℝ of real numbers  with basis      {v1,  v2,  

v3}.    Write     Vi  =  ℝvi     for   1   i  3.   

Then each   Vi   is a subspace of   V.   

Now in   S(V),   we have that   V1   V2  =  V1 + V2.   

In   L(V),   we have that     V1   V2  =  V1 V2.   

It is clear that     v1  +  v2    V1 + V2   and   v1  +  v2    V1   V2.   

Hence   V1   V2  =  sup {V1 , V2}  = V1 + V2   in the lattice   S(V),   is not same as   

 V1   V2  =  sup {V1 , V2}  =  V1 V2  in the lattice   L(V).   

This shows that   S(V)   cannot be a sublattice of   L(V). 

 
 (v).  Every singleton subset of a lattice  L  is a sublattice of   L. 
 
12.3. HOMOMORPHISMS: 
 
12.3.1.  Definitions: Let   L   and   M   be lattices.  A mapping   f  : L    M   is called a 
 
  (i) join-homomorphism if     f(x  y)  =  f(x)  f(y); 
 
  (ii) meet-homomorphism if   f(x  y)  =  f(x)  f(y); 
 
 (iii) order-homomorphism if   x    y    f(x)    f(y)  hold for all   x, y  L.   
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   (iv)  The function   f   is said to be a homomorphism (or lattice homomorhism) if it is both a 
join-homomorphism and a meet-homomorphism.   
 
   (v)   Injective,  surjective,  or   bijective (lattice) homomorphisms are called   (lattice) 
monomorphisms, epimorphisms, or isomorphisms, respectively.   
 
   (vi)  If   f   is a homomorhisms from   L   to  M, then   f(L)  is called as the  homomorphic 
image of   L. 
 
   (vii)  If there is an isomorphism from   L   to   M,  then we say that   L   and   M   are 
isomorphic, and we denote this fact by the symbol    ' L  M '. 
 
   12.3.2. Note:  (i)   The homomorphic image   f (L)   is  a  sublattice of   M    where   f :  L 
  M   is a lattice homomorphism. 
 
[Verification:  Let   f :  L   M   be a lattice homomorphism.  Let   x1,  y1    f (L)    there 

exists   x,  y    L   such that   f(x)  =  x1   and   f (y)  =  y1. 

Since   L  is a lattice,  x  y   and   x  y   exists.    

Now   x1  y1  =  f (x)  f (y)   =   f (x  y)     f (L). 

Also   x1  y1  =  f (x)  f (y)  =  f (x  y)    f (L). 

Now we have that   x1  y1,   x1  y1    f (L). 

Hence   f (L)    is a lattice and so it is a sublattice of  M ]. 

 
  (ii)  Every join (or meet)-homomorphism is an order-homomorphism.  
 
[Verification:  Part-(i):  Let   x    y   

         x  y  =  y      f (x  y)  =  f (y) 

          f (x)  f (y)  =  f (y)  [if   f   is a join-homomorphism] 

          f (x)    f (y) 

Now we proved that if   f   is a join-homomorphism,  then  f  is an order homomorphism. 

 
Part-(ii):  Let  x    y   

         x  =  x  y        f (x)  =  f (x  y) 

          f (x)  =  f (x) f (y)  (if  f   is a meet-homomorphism) 

          f (x)    f (y). 

Now we proved that if   f   is a meet-homomorphism,  then  f  is an order omomorphism.] 

 
   (iii) Every order-homomorphism need not be a join (or meet)-homomorphism. [Please refer 
the mapping h defined in the Example 12.3.4. This h is an order homomorphism, but not 
either meet homomorphism or join homomorphism]. 
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(iv)  The relationship between different types of  homomorphisms is presented in a 
diagramatic form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12.3.3. Example: Consider the lattices represented by the following diagrams. 
 
 
 
 
 
 
 
 
 
These lattices are isomorphic under the isomorphism given by 
 0 ↦ r,    a ↦ s,   b ↦ t,   1 ↦  u.  

The map   0 ↦ r,   a ↦ t,   b ↦  s,  l ↦u   is another isomorphism.   
 
 12.3.4. Example:  Consider the lattices  L1,  L2  and  L3  given here.  Define the functions  f, 
g  and  h   as follows:   
 
f : L1 ↦ L2   by   f(01)  =  f(a1)  =  f(b1)  =  02 ,  f(11)  =  12; 

g : L1 ↦ L2   by   g(01)  =  02,  g(11)  =  g(a1)  =  g(b1)  =  12; 

h : L1 ↦ L3   by   h(01)  =  03,  h(a1)  =  a3,   h(b1)  =  b3,   h(11)  =  13. 

 
 
 
 
 
 

isomorphism 

monomorphism epimorphism 

homomorphism 

Join-homomorphism Meet-homomorphism 

Order-homomorphism 

r 

 s t 

u 

0 

a b 

1 
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(i) These three mappings are order-homomorphisms. 

(ii) Here  f   is a meet-homomorphism (since f(a1  b1)   =   f(01)  =  02   =   f(a1)  f(b1)). 

However,  f is not a homomorphism (since f(a1  b1) = f(11) = 12 and  f(a1)  f(b1)  =  02).   

So   f   is a meet-homomorphism but not a join-homomorphism. 

 
 (iii)  We can observe that   g   is a join-homomorphism, but not a meet-homomorphism.   
 
(iv)  We can observe that  h  is neither a meet-homomorphism  nor a join-homorphism. 

(Since   h(a1  b1)  =  h(01)  =  03   and  h(a1)   h(b1)  =  a3  b3  =  a3.   

Also h(a1  b1)  =  h(11) = 03    and   h(a1)  h(b1)  =  a3  b3  =  b3). 

 
12.3.5. Definition:  Let   L   and   M   be two lattices.  The set of ordered pairs   

{(x, y)  /  x  L, y  M} (that is, the direct product of    L   and   M  (in symbols, we write    

L  M)) with operations      and      defined by  

(x1, y1)  (x2,  y2)  =   (x1  x2,  y1  y2),  and 

(x1,  y1)  (x2,  y2)  =  (x1  x2,  y1  y2), 

is called the product of two lattices.  The product lattice of finite number of lattices will be 

defined similarly (Refer Definition. 12.2.2.). 

 
 
 
 
 
 

01 

a1 b1 

11 

Lattice - L1 

12 

02 

Lattice - L2 

a3 

03 

13 

b3 

Lattice - L3 
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12.3.6. Example:  Consider the lattices  L  and  M  given here.  Observe the product lattice of   

L  and   M, which is also presented here. 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
12.4  SUMMARY:  
  

We presented several important examples of lattices for better understanding of the concepts. 
Later different types of homomorphisms were explained. Hasse diagrams of some lattices, 
and a product lattice were also included.   
 
12.5  TECHNICAL TERMS: 
 
Product Lattice (Refer 12.2.2., 12.3.5.) 
 
Lattice homomorhism  
The function   f   is said to be a  lattice homomorhism if it is both a join-homomorphism and a 
meet-homomorphism.   

 

x1 

x2 

x3 

L 

y3 

y1 

y2 

y4 

M 

(x3, y2) 

(x2, y4) 

(x2, y2) 

(x1, y2) 

(x2, y1) (x1, y4) 

(x1, y1) 

(x1, y3) 

(x2, y3) 

(x3, y3) 

(x3, y4) 

L  M 

(x3, y1) 
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12.6  SELF ASSESSMENT QUESTIONS: 
 
1. Define product lattice. 
 
2. Define different types of homomorphisms related to lattices. 
 
3. Give an example of a order homomorphism which is not a meet homomorphism. 
 
4. Give two examples of lattices, and draw Hasse diagrams. 
 
5. Give three Hasse diagrams related to two lattices and their product lattice.  
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LESSON 13 

MODULAR AND DISTRIBUTIVE LATTICES 
 
 
OBJECTIVE: 
 
 To know Modular and Distributive Lattices. 
 To understand the theorems on Modular and Distributive Lattices. 
 To identify the difference between Modular and Distributive Lattices. 
 To know diamond and pentagon lattices.  

 
STRUCTURE: 
 

13.1  Introduction 
13.2  Modular Lattices. 
13.3  Distributive Lattices. 
13.4  Some more results on Distributive Lattices. 
13.5  Summary 
13.6  Technical Terms 
13.7  Self Assessment Questions 
13.8  Suggested Readings 
 
13.1.  INTRODUCTION:  

 
In Lessons 11 and 12, we came to know the fundamentals, some examples, and some 

important results on Lattices.  In this lesson, we present two more important concepts:  
Modular Lattice, and Distributive Lattice which plays vital role in the theory of lattices.  
Examples to show the difference between these two concepts are also included.  Few 
theorems on this concepts were also presented. 

 
13.2.  MODULAR LATTICES: 
 
13.2.1. Definition: (i).  A lattice  (L, ,  )  is called a modular lattice if  it satisfies the 

following condition: x      z        x  (y  z)  =  (x  y )  z   for all   x,  y,  z    L. 

This condition is called as  modular identity. 
 

13.2.2.  Example:   Let   (G, •)   be a group and   L   be the set of all subgroups of   G.   

We define    ,    and on   L   as follows : 

For   N1,  N2    L,  define   N1    N2  =  N1•N2   and  N1    N2  =  N1   N2.  

Then (L, , )   is a lattice.   

Now we prove that this lattice   L   is a modular lattice. 

Let   N1 ,  N2 ,  N3    L  and   N1    N3.   

From  the set theory,  we have that   N1   (N2   N3)      (N1   N2)   N3. 

-
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Now we have to prove that  (N1   N2)   N3      N1   (N2   N3).   

That is,   (N1•N2) N3     N1•(N1 N3) .   

Let  x    (N1•N2) N3.   Then  x    N3 and x  =  y•z  for some  y    N1  and   z    N2.   

Now   x    N3   and  y    N1      x -1 y -1
 x     N1    N3. 

Hence   z  =  y -1
 x  = e y -1x   =  x •(x -1 y -1x)    N3 (since   x,   x -1 y -1

 x      N3). 

Thus   z     N2  N3.    x  =  yz    N1•(N2 N3).   

Hence  (L, , )   is modular lattice.    

 

13.2.3. Definition: Consider the lattice    L1  =  {0, a, b, c, 1}   whose Hasse diagram is given. 

 

 

 

 

 

 

This lattice   L1   is a modular lattice.   

This lattice is denoted by   M5 (or V3
5) and it is called as diamond lattice. 

 

13.2.4. Note:  Consider the lattice   L2  =  {0, a, b, c, 1}  whose Hasse diagram (pentagon 

lattice) is given here. This lattice  L2   is not a modular lattice.   

[Verification: In a contrary way,  suppose that this lattice   L2   is a modular lattice.  Since   b  

  c,  by modular law,  we have that    b  (a  c)  =  (b  c)  c 

         b   0  =  1  c         b  =  c,  a contradiction. 

Hence   L2   is not a modular lattice.] 

This lattice is denoted by  N5  (or V4
5) and it is called as the pentagon lattice. 

 

 

 

 

 

 

 

 

1 

0 

a c b Diamond Lattice     L1 

0 

1 

b 

a c 

Pentagon Lattice     L2 
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13.2.5.  Lemma: A lattice   (L, ,  )   is Modular      

x  {y  (x   z)}  =   (x  y )    (x   z)  for all   x, y, z   L. 

Proof: Suppose   L   is a modular lattice and   x,  y,  z    L.   

Since  x    x   z,  by  modular law,  we have that x  {y  (x   z)} = (x  y )  (x   z).  

 

Converse: Suppose  x  {y  (x  z )}  =   (x  y )    (x   z) for all   x,  y,  z    L.   

Let   x,  y,  z    L   and   x    z.   Then   x  z  =  z.   

Now   x   (y  z)  =   x  {y  (x   z)}   (since   z  =   x   z) 

                                =  (x  y)  (x   z)    (by the converse hypothesis) 

                                =  (x  y )   z 

This shows that   L  is a modular lattice.   

 

13.2.6. Theorem: A lattice  (L, , )  is a modular lattice    L contains no sublattice which 

is isomorphic to   N5  (the Pentagon lattice). 

 

Proof:  Suppose  L  has a sublattice  S  which is isomorphic to   N5, the pentagon lattice.   

We know that   N5   is not a modular lattice (refer the Note  13.2.4.). 

So we get that   S   is not a modular lattice and so   L  is not a  modular lattice.   

 

Converse:  Suppose that  L   is not a modular lattice.  Then there exist elements    

x,  y,  z    L  such that  x    z   and   x   (y  z)    (x  y)  z.   

We know that   x   (y  z)     (x  y)   z.   

So we have that   x   (y  z)  <   (x  y)   z.   

Part-(i):  Write  S = {t, a, b, c, s} where  t = y  z,   a = x   (y  z),  b  =  (x  y)   z,   

c  =  y   and   s  =  x  y.   

Then we get that  t    a  <  b   s   …  (i)   and   

                             t    c    s          …  (ii) 

Now   t    a   and   t    c 

                  t    (a  c)    b  c       (since  a  <  b) 

                            =  (x    y)  z   y   

                            =  y  z  =  t.   (by commutative, associative and absorption laws) 

So  we get that   a   c  =  b   c  =  t   …  (iii) 

Also   s     b,   s    c 
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                s    b     c     a    c    (since  a  <  b) 

                            =  x   (y  z)  y  =  x  y     (by absorption law) 

                            =  s 

So  we get that    b  c  =   a   c  =  s      …. (iv) 

Now we can conclude that   S   is a sublattice of  L.   

 

Part-(ii): Now we prove that all the elements of S  are distinct.   We know that    a  <  b.    

Suppose   t  =  c.     

Then   a  c  =  t  =  c     (by  (iii)) 

     c     a      a  =  a  c  =  s    (by  (iv)),  a contradiction to  (i).   

This shows that   t  <  c.   

 

Part-(iii): Suppose   c  =  s.  Then    c  =  s  =  b  c   (by  (iv)) 

        b    c      b   =   b  c       b  =  b  c  =  t     (by  (iii)) 

        b  =  t,  a contradiction to  (i). 

This shows that   c  <  s.   

Part-(iv): Suppose that  t  =  a.    

Then  s  =  a   c   (by  (iv))  

              =  t  c  (since   t  =  a,  our supposition here)  

              =  c        (since   t    c)    

       s  =  c,  a contradiction to the fact that    c  <  s. 

 

 Part-(v): Suppose   s  =  b.  Then  t  =  b   c  (by  (iii)) =  s   c  =  c   

 (since   s  =  b,  the supposition here ), a contradiction to the fact that   t  <  c.   

Thus all the elements of   S   are distinct, and the Hasse diagram of the lattice   S   is given.  

 

 

 

 

 

 

 

 

 
t 

s 

a 

c b 

S 
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This shows that   S   is isomorphic to  the pentagon lattice   N5.  The proof is complete. 
 

13.3. DISTRIBUTIVE LATTICES: 
 

 13.3.1. Definition:  A lattice   L   is said to be a distributive lattice if it satisfies the 

following laws: 

         (i) x  (y  z)  =  (x  y)  (x  z),  and  

        (ii) x  (y  z)  =  (x  y)  (x z),  for all x, y, z  L.   

These two laws are called the distributive laws. 

Theorem 13.3.4., says that the two laws  (i)  and  (ii)  given here are equivalent. 

 

 13.3.2.  Examples: (i) For any set  X, the lattice   (P(X),  ,  )   is a distributive lattice. 
 

(ii) Every chain is a distributive lattice. 

 

 

 

 

 

 

 
 

(iii) Consider the lattice   L  =  (0, a, b, c, 1)  whose Hasse diagram is  given here. We can  

observe that this lattice is a distributive lattice . 
 

(iv) The “diamond lattice”   V3
5  ; and the “pentagon lattice” V4

5   are not distributive lattices.   

In  V3
5   ,  a  (b  c)  =  a  1 =  (a  b)  (a  c).  

In   V4
5,   a  (b  c)  =  a   c  =  (a  b)  (a  c). 

These are the two smallest non-distributive lattices. 
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L 
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13.3.3. Theorem: Prove that the following properties of a lattice   L   are equivalent: 

    (i) x  (y  z)  =  (x  y)  (x  z)  for all   x,  y,  z    L; 

   (ii) (a b)   c  =  (a  c)  (b  c)  for all   a,  b,  c    L; 

   (iii) (a b)  (b  c)   (c  a)  =  (a  b)  (b  c)  (c  a)  for all   a,  b,  c    L. 

 

Proof: (i)  (ii):  Suppose    x  (y  z)  =  (x  y)   (x  z). for all  x,  y,  z    L . So     

(a  c)  (b  c)  =  [(a  c)  b]   [(a  c)  c]     (by (i)) 

                            =  [(a  c)  b]   c     (by commutative and absorption laws) 

                            =   [(a b)    (c b)]  c               (by (i)) 

                           =  (a b)    [(c b)  c]  (by associative law) 

                           =  (a b)  c   (by absorption law) 

This proves  (ii). 
 

(ii)  (iii):   Suppose (ii). 

(a b)  (b  c)   (c  a)   

       =  (a b)    [(b  c)  (c  a)] 

       =  {a  [(b  c)   (c  a) ]}  {b  [(b  c)   (c  a) ]}                   (by  (ii)) 

       =  {a  (b  c)}   {b  (c  a)}  (by commutative, associative and absorption laws) 

       =  {(a  b)  (a   c)}   {(b  c)  (b  a)}    (by  (ii)) 

       =   (a  b)  (b   c)  (c  a)     (by idempotent law) 
 

(iii)  (i):  Suppose that   a    c.   

Then   a  b    c   b      (a  b)    (c  b)  =  (c  b)      ….. (*) 

Also  a    c =  c. Now    

(a  c)  (b  c)  =  (a  c)  [(a  b) (c  b)]      (by  (*)) 

                            =  (a  b)  (b  c) (c  a) 

                            =  (a  b)   (b   c)  (c   a)     (by   (iii)) 

                            =  (a  b)   (b   c)  c    (since   a    c) 

                           =  (a   b)  c       (by absorption law) 

Now we proved that    (a   b)  c  =  (a  c)   (b  c).    

This shows that  (i)  is true.  The proof is complete. 
 

13.3.4. Corollary: If  L  is a  distributive lattice, then it is a modular lattice. 
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Proof:  Assume that   L   is a distributive lattice.   

Let   x,  y,  z    L  and   x    z.  Then  by the  Theorem 13.3.3.,   we have that  

(x  y)   (y  z)  (z  x)  =  (x  y)  (y  z)  (z  x). 

Since   x    z,   we have that    x  z  =  x    and   x  z  =  z,  and so   

 (x  y)   (y  z)  x   =  (x  y)  (y  z)  z 

            x  (y  z)   =   (x  y)  z   (by absorption laws). 

This shows that    L   is a modular lattice.   

 

13.3.5. Note:  The converse of the Corollary 13.3.4, is not true.  That is,  there exist modular 

lattices  which are not distributive.   

For example, consider the diamond lattice. This lattice is a   modular lattice,  but not a 

distributive lattice.   

 

 

 

 

 

 

13.3.6. Theorem: A modular lattice   L   is distributive    none of its sub lattices is 

isomorphic to the Diamond Lattice  L1   (the diamond lattice is also denoted by   V3
5). 

 

Proof:  We know that   V3
5    is not distributive. 

In a contrary way, suppose that    L   has a sublattice   S  which is  isomorphic to V3
5. 

Then   S   is not distributive    L  is not distributive,  a contradiction.   

Hence we conclude that  L contains no sublattice which is isomorphic to the Diamond lattice. 
 

Converse:  Suppose  that   L   is modular lattice which is not distributive.   
 

Part-(i):  Since L is not destributive,  by the Theorem 13.3.3.,  there exists   x,  y,  z    L  

such that  (x  y)   (y  z)  (z  x)  <  (x  y)  (y  z)  (z  x).   

Write     s   =   (x  y)  (y  z)  (z  x),  

t  =  (x  y)  (y  z)  (z  x),    a  =  s  (x  t),  b  =  s  (y  t),  and    c  =  s  (z  t). 

 

Part-(ii):  Since  L  is modular and   s  <  t,  we have that    

a  =  (s  x)  t,       b  =  (s  y)  t   and   c  =  (s  z)  t.   

1 

0 

a c b Diamond Lattice     L1 
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Now    x  t   =   x  (x  y)  (y  z)  (z  x) 

                      =   x   (y  z)    (by absorption law)  …  (i) 

Similarly,    y t  =  y  (z  x)   and    z  t  =  z  (x  y)                          …  (ii) 

Now    x  s  =   x    (x  y)    (y  z)    (z  x) 

                      =  x    (y z)  (by absorption law)  … (iii) 

Similarly,    y  s  =   y  (z  x)   and    z  s  =  z  (x  y)                          ... (iv) 
 

Part-(iii):  Now    a  b    =  s  (x  t)  s  (y  t)  (by the definition of  a  and  b) 

                        =  s  (x  t)  (y  t)  (by idempotent law) 

                        =   s  {x  (y  z)}  {y  (z  x)}          (by   (i)  and  (ii)) 

                      =  s  {x  (y  z)  y}  (z  x)} 

                 (by modular law since   x  (y  z)    x    z  x) 

                      =  s  [{(x  y)  (y  z)}  (z  x)]   (by modular law since   y    y  z) 

                     =  s  t    (by the definition of t) 

                     =  t   (since  s    t, by the definition of  s  and  t). 

Similarly,  we can  get that    b  c  =  c  a  =  t. 

So we got that  a  b = b  c  =  c  a  =  t       …  (v) 

Dually,  we get that   a  b  =  b  c  =  c  a   =  s  …  (vi) 
 

Part-(iv):  Now  we prove that the elements   s,  a,  b,  c,  t  are all distinct. 

Suppose   s  =  a.   

Then    a   b  =  s  (by  (vi))  =  a (by our supposition here),  and   c  a  =  (by  (vi))  =  a (by 

our supposition here) 

        a  b  and  a    c 

         a  b  =  b   and   a  c  =  c.   

           b  =  c  =  t  (by (v)) 

           t  =  t   t  =  b   c  =  s   (by (vi)), a contradiction to the fact that    s  <  t. 

Therefore   s    a.  

Similarly,  we can prove that    s    b  and  s    c. 

Dually we get   t    a,  t    b,   and   t    c.  

 

Part-(v):   Suppose   a  =  b. 

Then s = a  b (by (vi)) = a (by the supposition here), a contradiction to the fact that a  s. 
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Therefore  a  b.  Similarly we can get that  b  c, and a  c. 

Thus   a,  b,  c   are all incomparable.   

This shows that the set  S  =  {s, a, b, c, t}  is a sublattice of   L   whose Hasse diagram is of 

the form which is isomorphic to V3
5 .   

 

 

 

 

 

 

The proof is complete. 
 

13.3.7.  Theorem: A lattice   (L,  , )   is distributive   none of its sublattices is 

isomorphic to either the pentagon lattice  N5  or  the Dimond lattice  V3
5 .   

Proof:  The proof follows from the Theorem 13.2.6., and Theorem 13.3.6. 
 

13.3.8. Example:  (i).  Let   L   be a lattice whose Hasse diagram is as  follows. 

 

 

 

 

 

 

 

 

 

Then   L   is a distributive lattice because it has no sublattice isomorphic to either   the 

Diamond lattice or the Pentagon lattice. 

(ii).  Let   L   be the lattice given by the following Hasse diagram. 

 

 

 

 

 

 

1 

0 

a c b 

1 

a 
b 

o 

c d 

0 

1 

t 

a 

b 
d 

c 

e 
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Then   L   is not a modular lattice because  the set   

S = {o, a, b, d, 1}  is a sublattice of   L   which is isomorphic to   the Pentagon lattice.  

Note that there exist some other sublattices  of   L  which  are isomorphic to the Pentagon 

lattice.  Finding the other sublattices of L which are ismorphic to the Pentagon lattice, was 

left to the reader for exercise.  

 

13.4  SOME MORE RESULTS ON DISTRIBUTIVE LATTICES: 
 

13.4.1. Result: For a given lattice  L, the following two conditions are equivalent: 

      (i)  x  (y  z) = (x  y)  (x  z), and 

     (ii)  x  (y  z) = (x  y)  (x z)   for all x, y, z  L. 

Proof:    Part-(i): Suppose that    

            x  (y  z)  =  (x  y)  (x  z)    …  (i) 

Now    (x  y)   (x   z)   =   [(x  y)  x]  [(x  y)  z]   (by   (i)) 

                               =   x   [(x  y)   z]                (by commutative and absorption laws) 

                              =  x  [z  ( x  y)]  (by commutative law) 

                              =   x  [(z  x)  (z y)]   (by  (i)) 

                              =   [x  (z  x)]  [z y]    (by associative law) 

                              =   x  (z y)            (by commutative and absorption law) 
 

Part-(ii):  Suppose that  x  (y  z)  =  (x  y)  (x z) …  (ii) 

Now (x  y)    (x  z)   =   [(x  y) x]   [(x  y)  z]   (by   (ii)) 

                               =   x  [ (x  y)   z]      (by commutative and absorption laws) 

                              =   x  [z  ( x  y)]  (by commutative law) 

                              =   x  [(z  x)  (z y)]     (by  (ii)) 

                              =   [x  (z  x)]  [z y]          (by associative law) 

                              =   x  (z y)         (by commutative and absorption law) 

Therefore    x  (z y)  =   (x  y)  (x  z).   The proof is complete. 
 

13.4.2.  Theorem: A lattice   L   is distributive    the cancellation rule:   

x    y  =  x    z,  x    y  =  x    z           y  =  z   holds for all   x, y , z  L. 
 

Proof: Suppose   L   is distributive. 

Let   x,  y,  z    L   and   x  y  =  x   z,   x  y  =  x  z.   
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Then   y  =   (x  y)    y               (by absorption law) 

               =   (x  z)    y                (by given condition) 

               =   (x  y)    (z  y)       (by distributive law) 

               =   (x  z)    (y  z)       (by given condition) 

               =   (x  y)   z                 (by distributive law) 

               =   (x  z)   z                 (by given condition) 

               =   z                                 (by absorption law) 
 

Converse:  Assume the cancellation rule. 

In a contrary way,  we suppose that    L   is not distributive.  Then by the Theorem 13.3.7.,  

we have that   L   contains a sublattice    S  =  {u, a, b, c, v}   which is isomorphic to either   

the Pentagon lattice or the Diamond lattice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In either case,  we have that  

                    a b   =   a  c  =  u 

                    a  b  =   a  c  =  v 

and   b    c,  which is a contraction to our assumed cancellation law.   

This shows that    L   is a  distributive lattice.  
 

13.4.3. Definition: A lattice L with 0 and 1 is called complemented if for each   x  L  there 

exists at least one element   y   such that   x   y = 0   and   x    y = 1.   

Each such  y  is called a complement of  x.  We denote the complement of   x   by  x1. 

Pentagon lattice 

u 

v 

a 

b 

c 

v 

u 

a c b 
Diamond lattice 
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13.4.4. Examples:  (i) Let  L  =  P(M).  Then  B = M \ A is the unique complement of A. 
 

   (ii) In a bounded lattice,  1  is a complement of   0,   and   0  is a complement of  1. 
  

   (iii) Every chain with more than two elements is not a complemented lattice. 
 

    (iv) The complement need not be unique.  For example,  in the diamond lattice, both the 

two elements   b  and  c,  are complements for the element   a. 
 

 (v)  Let  L be the lattice of subspaces of the vector space ℝ2.  If   T   is a complement of a 

subspace   S,   then  S  T = {0}  and   S + T = ℝ2.    

Hence a complement is a complementary subspace.   
 

13.4.5. Theorem: If  L  is a distributive lattice, then every element    x   L   has at most one 

complement.   
 

Proof:  Let L be a distributive lattice.  Suppose  x  L has two complements  y1  and  y2.   

Then   x  y1  =  1  =  x  y2   and   x y1  =  0  =  x y2.  

By the Theorem  13.4.2., we have that  y1  =  y2, a contradiction. 

 

13.4.6. Definition: Let   L   be a lattice with zero. An element  a  L   is said to be an atom if   

a   0   and if it satisfies the following condition: 

 b   L,   0 < b  a        b  =  a. 

 

13.4.7. Definitions: (i)  An element  a  L  is said to be join-irreducible if it satisfies the 

following condition:    b,  c  L,   a  =  b  c      a  =  b  or   a  =  c. 
  

   (ii)   An element is said to be  join-irreducible if it is not join-irreducible. 

 

13.4.8.  Lemma:  Every atom of a lattice with zero is join-irreducible. 
 

Proof:  Let   a   be an atom and let   a = b  c,  a    b.   

Then   a  =  sup(b, c)  and  so   b < a.  Since   a  is an atom, we have that   b  =  0. 

So  a  =  b    c =  0   c =  c.  The proof is complete. 

 

13.4.9.  Lemma: Let L be a distributive lattice and let   p  L be join-irreducible with   p    

a  b.  Then   p  a   or   p  b. 
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Proof:  Given that   p     a  b.   

So    p  =  p  (a  b)   

            =  (p  a)  (p  b)       (by distributive law)  

           p  =  p  a   or   p  =  p  b    (since   p   is join-irreducible)  

             p    a   or   p    b. 
 

13.4.10. Lemma: Suppose   L   is a distributive lattice and   

a    L.  If   a   satisfies the condition:  b,  c    L,   a    b  c          a    b   or   a    c,   

then   a   is a join-irreducible element. 

 

Proof: Assume the condition that   a    b  c        a    b   or   a    c.   

Let   b,  c    L   such that   a  =  b  c.    

Then   a    b  c   and  so we get that   a    b   or   a    c. 

But  a  =  b  c      b    a   and   c    a.  So,  we get that    a  =  b   or   a  =  c. 

This shows that   a   is a join-irreducible element. 
 

13.4.11. Theorem: Let L be a distributive lattice. Then an element   p  L  is join-irreducible  

  p satisfies the following condition:   

a, b   L,   p    a  b         p  a   or   p  b. 
 

Proof is the combination of Lemma  13.4.9  and Lemma 13.4.10. 
 

13.4.12. Definitions: (i) If  x  [a, b] =  {v  L  /  a  v  b} and  y  L  with   

 x  y  =  a   and   x  y = b,   then  y   is called a relative complement of  x  with respect to 

the interval  [a, b].   
 

(ii)  If all intervals   [a, b]   in a lattice  L  are complemented, then  L  is called relatively 

complemented.   
 

(iii) If  L has a zero element and all   [0, b]  are complemented, then   L   is called sectionally 

complemented. 
 

13.5  SUMMARY:   
 
In this lesson, we presented two important concepts:  Modular Lattice, and Distributive 
Lattice which plays vital role in the theory of lattices. The diagrams for Diamond lattice and 
pentagon lattice were also included. Examples to show the difference between the two 
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concepts Modular lattice and distributive lattice given.  Few theorems on this concepts were 
also presented. 
 
13.6  TECHNICAL TERMS: 
 
Modular lattice 
A lattice  (L, ,  )  is called a modular lattice if  it satisfies the following condition:  
x      z        x  (y  z)  =  (x  y )  z   for all   x,  y,  z    L. 

 
Diamond lattice (Definition 13.2.3). 
 
Pentagon lattice (Definition 13.2.4) 
 
Distributive lattice 
A lattice   L   is said to be a distributive lattice if it satisfies the following laws: 
         (i) x  (y  z)  =  (x  y)  (x  z),  and  
        (ii) x  (y  z)  =  (x  y)  (x z),  for all x, y, z  L.   
 
Complemented Lattice. 
A lattice L with 0 and 1 is called complemented if for each   x  L  there exists at least one 
element   y   such that   x   y = 0   and   x    y = 1. 
 
13.7 SELF ASSESSMENT QUESTIONS: 
 
1. Define Modular lattice and Distributive lattice.  Also provide examples for each. 
 
2. Prove that a lattice  (L, , )  is a modular lattice    L contains no sublattice which is 
isomorphic to   N5  (the Pentagon lattice).  (Theorem: 13.2.6.) 
 
3. Prove that a modular lattice   L   is distributive    none of its sub lattices is isomorphic to 
the Diamond Lattice  L1   (the diamond lattice is also denoted by   V3

5). 
(Theorem 13.3.6.) 
 
4.  Define complemented lattice, and give an example. 
 
5.  Prove that a modular lattice   L   is distributive    none of its sub lattices is isomorphic to 
the Diamond Lattice  L1   (the diamond lattice is also denoted by   V3

5). 
(Theorem 13.3.6.) 
 
6.  Prove that a lattice   L   is distributive    the cancellation rule:   
x    y  =  x    z,  x    y  =  x    z           y  =  z   holds for all   x, y , z  L. 
(Theorem 13.4.2.) 
 
13.8  SUGGESTED READINGS:  
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LESSON - 14 

BOOLEAN POLYNOMIALS 
 
 
OBJECTIVE: 
 
 To know Polynomials with coefficients 0 and 1. 
 To understand the Boolean polynomials.  
 To identify different operations with Boolean polynomials. 
 To understand equivalent expressions  
 To know minterm or product term.  
 To develop skills in finding dnf and cnf for a given expression. 

 
STRUCTURE: 

14.1   Introduction 
14.2.  Some definitions. 
14.3.  Boolean Polynomials  
14.4.  Normal Forms.  
14.5.  Disjunctive normal forms.   
14.6.  Conjunctive normal forms  
14.7   Summary 
14.8   Technical Terms 
14.9   Self Assessment Questions 
14.10  Suggested Readings 
 

 
14.1. INTRODUCTION:  
 
In this lesson, we study Boolean polynomials and equivalent expressions.  We will make 
learn to express the given Boolean polynomials in terms of disjunctive normal form and 
conjunctive normal form.  
 

14.2. SOME DEFINITIONS: 

 
 In this section some important useful definitions and examples were included. 

 

14.2.1. Definition: A complemented distributive lattice is called a Boolean algebra (or a 

Boolean lattice).  

 

14.2.2   Note: (i) By the Theorem 13.4.5. (of the lesson 13), we have that every element   x   

of a complemented distributive lattice, has unique complement (which is denoted by   x1).   

 (ii)  From (i), we can conclude that every element   x   of a Boolean algebra,  has unique 

complement.   

 



Centre for Distance Education                       14.2                   Acharya Nagarjuna University            
 

14.2.3 Notation: Henceforth, we use  B  to denote a Boolean algebra.  So B   denotes a set 

with the two binary operations    and   ,  with zero element  0  and a unit element  1,  and 

the unary operation of complementation.   

We write    B  =   (B,  , , 0, 1)  or   B =  (B, , ), in short.   

 

14.2.4 Examples: (i) Let  M  be a set and  P(M)  be the power set of   M.   

Then the system (P(M) , , , , M1)  is a  Boolean Algebra. Here    and  are the set-

theoretic operations: intersection and union, and the complement is the set-theoretic 

complement  (that is, M \ A = A1).     

In this Boolean algebra, the elements    and   M  are the “universal bounds”.   

If   M contains exactly   n   elements, then   P(M)   contains exactly   2n   elements.  

(ii) Let   ℬ   be the lattice   V1
2,  where the operations are defined by  

 

 

 

     0     1        0   1    1  

  0   0    0    0    0   1    0     1 

  1   0    1    0    1   1    1     0 

 

Then  (ℬ, ,, 0, 1, 1)  is a Boolean algebra.   

(iii) Consider the Boolean algebra  ℬ given in  (ii).   

Let   n   be a positive integer.   

Consider the set    ℬn,  the Cartesian product of    n   copies of   ℬ.  

The set  ℬn   is a  Boolean algebra with respect to  the operations given below:          

(i1,…, in)   (j1,…, jn)  :=  (i1  j1, …, injn),   

(i1 ,…, in)    (j1,…, jn)  :=  (i1 j1, …, injn),  (i1,…, in)1  :=  (i11, …, in1),  and       

0  =  (0, …, 0),   1  =  (1, …, 1) 

   (iv) Suppose  ℬ1 , ℬ2 ,  … ℬn  are Boolean algebras.   

Consider  ℬ = ℬ1 ℬ2   …  ℬn, the Cartesian product of the Boolean algebras  

ℬ1 ,ℬ2 ,  … ℬn .  

V1
2 

0 

1 
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We define the operations    ,     and  complementation in   ℬ as follows:   

          (i1,…, in)   (j1,…, jn)  :=  (i1  j1, …, in  jn), 

          (i1 ,…, in)    (j1,…, jn)  :=  (i1  j1, …, in  jn), 

          (i1,…, in)1  :=  (i1
1, …, in

1),  and    

0  =  (0, …, 0), 1  =  (1, …, 1) 

where   ik,  jk  ℬk   for 1  k   n.   

It is easy to verify that   ℬ  =  ℬ1 ℬ2   …  ℬn   is a  Boolean algebra.   

So   ℬ    is the direct product of the given Boolean algebras.  

 
14.3.  BOOLEAN POLYNOMIALS:  
 

In this section, we study the concepts: Boolean polynomials and Polynomial functions. 
 

14.3.1.  Definition: Let  X  =  {x1, …, xn}  be a set of   n  symbols (called indeterminants or 

variables). The Boolean polynomials in the variables  x1, …, xn    are the objects which can be 

obtained by finitely many successive applications of the following:      

(i) x1, x2, …, xn and  0, 1  are Boolean polynomials;     

(ii) If   p   and   q   are Boolean polynomials,  then    p  q,  p  q,   and   p1  are Boolean 

polynomials.  
 

14.3.2.   Note:  (i) Two polynomials  P  and  Q  are said to be equal if we get   Q  from   P  by 

using the properties of Boolean algebra.     

(ii)  We write   Pn =  the set of all Boolean polynomials in  n  variables   x1, …, xn .   

 

14.3.3. Example:   (i)   The expressions   0, 1,  x1,  x1  1,  x1  x2,  x1
1,   x2,  

  x1
1  (x2  x1)  are some examples of Boolean polynomials over {x1, x2}.     

(ii) Since every Boolean polynomial over  x1, …, xn is also  a Boolean polynomial  

Over   x1, …, xn, xn+1,  we have  that   P1    P2    ….    Pn     Pn+1  …  

 

14.3.4.  Definition:  Let   B  be a Boolean algebra,   Bn   the direct product  of   n   copies of   

B, and   p  a Boolean polynomial in   Pn.  Then we define a function  pB  as follows: pB : 

BnB;     (a1, …, an) ↦pB (a1, …, an).  This function   pB  is called the Boolean polynomial 
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function induced by  p   on   B.    Here   pB (a1, …, an)   is the element in   B   which is 

obtained from   p   by replacing each   xi   by   ai  B, 1  i  n.  
 

14.3.5. Example: Suppose that   ℬ  denotes the Boolean algebra {0, 1}   with the usual 

operations.  Let  n = 2,   p  =  x1   x2,   q = x2  x1.   

Then pℬ : ℬ2ℬ:   (0, 0) ↦ 0,  (0, 1) ↦ 0,  (1, 0) ↦ 0,  (1, 1) ↦ 1;  and  

 qℬ: ℬ2↦ℬ:   (0, 0) ↦ 0,   (0, 1) ↦ 0, (1, 0) ↦ 0, (1, 1) ↦ 1. Therefore     pℬ  =  qℬ. 

 

14.3.6  Note:    The Example 16.2.5 shows that the two different Boolean polynomials  p and 

q  have the same Boolean polynomial function   pℬ  =  qℬ.    

 

14.3.7  Notation: Let B be a Boolean algebra.  Using the notation introduced in the        

Definition 14.3.4,   we define   Pn(B)   =   { ℬ   /   p  Pn }.  

 

14.3.8  Theorem: Let  B  be a Boolean algebra.  Then the set Pn(B)  is a Boolean algebra,  

and also it is a subalgebra of the Boolean algebra Fn(B)  of all functions from  Bn  

 into   B.  

Proof: We have to verify that Pn(B) is closed with respect to  ,   ,  and  'the complement of 

functions'.    Also we have to verify that   Pn(B)  contains   f0   and   f1.    

Let  a1, …, an  B.   

Then  ( B  B)(a1, …, an)   =   B(a1, …, an)    B(a1, …, an)   =  (a1, …, an)     

   ( B B)   =   .  

Now we proved that for all B , B  Pn(B),   B  B =  Pn(B).     

For     and   1  we proceed similarly.    

Also    =  f0,    = f1  where   f0 : BnB  is defined by   f0 (x)  =  0;   

and  f1 : BnB  defined by  f1(x)  = 1 for all  x  Bn.   

 

14.3.9  Definition: Two Boolean Polynomials  p, q  Pn  are equivalent  

(in symbols p ~ q) if their Boolean polynomial functions on  ℬ  are equal.   

That is,   p ~ q  ℬ =  ℬ.  

 

14.3.10.   Lemma: The relation ~  defined in 16.2.9  is an equivalence relation on Pn.  

p

p q p q B)qp( 

p q B)qp( 

p q p q B)qp( 

0 I

p q
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Proof: Since   ℬ  =  ℬ, we have that    p ~ p  for all   p  Pn.    Let  p,  q,  r    Pn .   

Suppose   p ~ q    ℬ  =  ℬ    ℬ  =  ℬ    q  ~  p.  

Suppose  p  ~  q  and  q  ~  r     ℬ  =  ℬ   and  ℬ  =  ℬ   ℬ  =  ℬ   p  ~  r.  

This shows that   ~  is an equivalence relation. 

 

14.3.11.  Notation: (i)  Consider the relation  ~  defined in  16.2.9.    

By the above lemma14.3.10,  this relation is an equivalence relation.     

(ii)   The equivalence class  containing an element   p Pn  is denoted by  [p].    

The set of all equivalence classes is denoted by   Pn / ~ .    

So we have that   Pn / ~    =   { [p]   /  p  Pn}.  

 

14.3.12  Theorem:  (i)  Pn / ~    =   { [p]   /  p  Pn}  is a Boolean algebra with respect to the 

usual operations on equivalence classes  [p]  [q] := [p  q] and  [p]  [q] := [p  q].    

(ii)   Pn/~   b  Pn(ℬ).         

 

Proof:  (i) Suppose   [p1]  =  [p2]  and  [q1]  =  [q2].  Then   p1 ~ p2   and   q1 ~ q2 

                   (p1)ℬ  = (p2)ℬ   and   (q1)ℬ  =  (q2)ℬ   

                   (p1  q1)ℬ  =  (p2  q2)ℬ     

                    p1  q1  ~  p2  q2     [p1  q1] = [p2  q2].  

In the same way,  we get that   [p1  q1]  =  [p2  q2]. 

Therefore the operations   ,     on   Pn / ~   are well defined.   

Let  [p],  [q]    Pn / ~ .   Then  [p]  [q]  = [p  q]    Pn / ~ .  

Similarly,  [p]  [q]  = [p  q]    Pn / ~ .  Therefore    Pn / ~   is a lattice. 

Now it is easy to verify that   Pn / ~   is a Boolean algebra. 
 

   (ii) Define a mapping   h : Pn(ℬ)    Pn / ~   by  h( p ℬ)  : =  [p].   

Now we have that   p ℬ  =  q ℬ      p  ~  q     [p]  =  [q]. 

Therefore   h   is well defined and one-one.   

Let  [p]   Pn / ~ .  Then  p ℬ  Pn(ℬ)  and  h( p ℬ)  : =  [p].  This shows that   h   is onto. 

Now    h ( p ℬ  q ℬ)  =   h (( qp )ℬ)  =  [(p  q)]  =  [p]  [q]  =  h ( p ℬ )   h ( q ℬ). 

p p

p q q p

p q q r p r
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Also   h ( p ℬ    q ℬ)  =   h (( qp )ℬ)   

                            = [(p   q)]  =  [p]    [q]  =  h ( p ℬ )   h ( q ℬ),  and    

h[( p ℬ)1]  =  h ( 1p ℬ)  =  [p1]  =  [h( p ℬ)]1.  Therefore   h   is a lattice homomorphism.   

Also   h( 0 ℬ)  =  0,  h(1ℬ)  =  1.   

Since   h( p ℬ)    h( 1p ℬ)  =  h( p ℬ  1p ℬ)  =  h( 0 ℬ)  =  0, and  h( p ℬ)  h( 1p ℬ) = 1,  we 

have that   h   is a Boolean homomorphism.  So   h   is a Boolean isomorphism.  

 

14.3.13.   Note: For any two equivalent polynomials, the corresponding polynomial functions 

are equal (on any Boolean algebra).  
 

14.3.14   Theorem:  Let   p,  q  Pn,   p ~ q,   and  B  an arbitrary Boolean algebra.   

Then ℬ  =  ℬ.  

Proof: Since   B  is a finite Boolean algebra,   we  have that  B   is a Boolean subalgebra of   

P(X)  b ℬx  for some set  X.  Now  it is sufficient  to prove the result for   ℬx.    

We know (from the definition) that   

 p ~ q    ℬ  =  ℬ   

             ℬ (i1, …, in)  =  ℬ (i1, …, in) for all   i1, …, inℬ. Let  f1, …, fnℬx . 

Let   x  X.    For notational  convenience  we write  A  =  ℬX
.    

Now  we have that   ( A (f1, …, fn))(x)  =  ℬ(f1(x), …, fn(x))    

                                                                =  ℬ(f1(x),…, fn(x))   =  ( A (f1, …, fn))(x).     

Hence   A = A.  

 

14.3.15  Notation: From now onwards,   we simply write     instead of   B   if the domain 

of     is clear.   We may replace a given polynomial   p   by an equivalent polynomial which 

is in more simple or more systematic form.  

 

14.4.  NORMAL FORMS: 
 

14.4.1 Definition:  Let   N   be a subset of   Pn.  Then   N  is said to be a system of normal 

forms if it satisfies the following two conditions:   

p q

p q

p q

p p

q q

p q

p p

p
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(i)  p  Pn     there corresponds   q  N   such that  p ~ q;   

(ii)   q1, q2  N,   q1   q2       q1 ≁  q2.  

 

14.4.2 Notation:  We write   p + q   for   p  q,   and    pq   for   p  q.  

 

14.4.3   Note :  (i)  Consider  the function  p  =  x1x2
1x3

1.   It is clear that    takes the value 1 

only at  (x1, x2,  x3)  = (1, 0, 0)  and is zero elsewhere.      

(ii) Consider the function q = x1x2
1x3

1 + x1x2x3.   

This q  takes  value  1  exactly at    (1, 0, 0)  and  (1, 1, 1).   
  

14.4.4  Note :  Let   f   be a function from   ℬn  into  ℬ.     

(i)   we find out  each   (b1, …, bn)  satisfying the condition:     f(b1, …, bn)  = 1.    

Also we  write down the  corresponding product term  … ,  where   x1 =  x    

and    x0  =  x.     

(ii) The sum      p   =    induces the function   = f .   

Now we represented f as the sum of the product terms of the type   … .    

(iii) We replace each product term    …  in  p  by   1  … .   

Note that in the representation for p,   1  is the coefficient of the term    … .     

(iv) We add to the representation of  p  the terms of the form 0  …   for all the  

terms    …   that do not appear in   p . (Note that in the representation for p,  0  is the 

coefficient of these additional  terms    … ).   

(v) Now by selecting different combinations of zeroes and  ones as coefficient of these terms, 

we get different functions   ℬnℬ.    

 

14.4.5  Notation:  Consider the collection   Nd   of all polynomials in  Pn of the form  

…   where each   ,…,in  is  0  or 1,  and each  ij is 0 or 1.   

So we can write   

Nd  =  { …  /  each  ,…,in  is  0  or 1, and each  ij is 0 or 1}  

 

14.4.6.  Theorem: Nd is a system of normal forms in  Pn.   

Proof:  Part-(i) In this part we prove that if  p,  q    Nd  and   p  ~  q,   then   p  =  q. 

p

1b
1x 2b

2x nb
nx


1)b,...,b(f

b
n

b
2

b
1

n1

n21 x...xx p

1c
1x nc

nx

1b
1x 2b

2x nb
nx 1b

1x 2b
2x nb

nx

1b
1x 2b

2x nb
nx

1c
1x nc

nx

1c
1x nc

nx

1c
1x nc

nx


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d
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Let   p,  q    Nd   and   p  ~  q.   

We follow the notation given in the above Notation 14.4.5.  

Now   p  =  { 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx },   and    q  =  { 

)j,...,j(
j,...j

n1

n1
e 1j

1x … nj
nx }    … (i) 

Let   (k1, k2,  … kn)    {0, 1}n. 

Since  p  ~  q,  we have that   p ℬ   =  q ℬ   

        p ℬ  (k1, k2,  … kn)   =   q ℬ (k1, k2,  … kn)  

        { 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx }(k1, k2,  … kn)   

             =   { 
)j,...,j(

j,...j

n1

n1
e 1j

1x … nj
nx }(k1, k2,  … kn)   … (ii) 

Consider the L.H.S of  (ii).  If  (k1, k2,  … kn)  =  (i1, i2,  … in),  then 

             
n21 i...iid   1i

1x … ni
nx (k1, k2,  … kn)  =   

n21 i...iid . 

If  (k1, k2,  … kn)    (i1, i2,  … in),  then  
n21 i...iid   1i

1x … ni
nx (k1, k2,  … kn)  =   0. 

Now consider the R.H.S  of  (ii). 

If  (k1, k2,  … kn)  =  (j1, j2,  … jn),  then  (
n1 j,...je  1j

1x … nj
nx ) (k1, k2,  … kn)  =  

n1 j,...je . 

If  (k1, k2,  … kn)    (j1, j2,  … jn),  then  (
n1 j,...je  1j

1x … nj
nx ) (k1, k2,  … kn)  =  0. 

This shows that   
n21 k...kkd   =  

n1 k,...ke .  This is true for  all n-tuples (k1, k2,  … kn). 

Hence  p  =  q. 

 

Part-(ii): Write   Nd(B)  =  { Bp  /  p  Nd}. 

Now   Nd(B)  =  { Bp  /  p  Nd }     Pn / ~       BN d     ~/Pn . 

Write   B  =  {0, 1}  the Boolean algebra consisting of two elements.   

We know that   Fn(B)  =  {f : Bn   B}.  

Define    : Nd(B)   Fn(B)  by   ( Bp )(i1, i2,  … in)  =  
n21 i...iid  

where   p  =  
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx  .    Suppose    q  =  

)j,...,j(
j,...j

n1

n1
e 1j

1x … nj
nx . 

Now   ( Bp )  =   ( Bq )   
n21 i...iid   =  

n21 i...iie   for all n-tuples  (i1, i2,  … in)   

          p ~ q      Bp  = Bq . 

This show that      is well defined and one-one. 
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Part-(iii): Let   f   Fn(B),  then by above note   f  =   p   where   p  =  
1)b,...,b(f

b
n

b
1

n1

n1 x,...,x  

                 =  
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx    with  

n21 i...iid   =  1    f(i1, i2,  … in)  =  1. 

Now    ( Bp )(i1, i2,  … in)  =  
n21 i...iid   =  f(i1, i2,  … in).   This shows that     is onto. 

 

Part-(iv): From Part-(ii) and Part-(iii), we get that   is a bijection and  

so  BN d  =  BFn  =  
n22 . 

Now    BN d     ~/Pn   =   BPn      BFn    (by the  Theorem 14.3.8 )   =  BN d . 

       BN d   =  ~/Pn   =  
n22 . 

      For any  q    Pn   there exists  Bp      BNd   such that   Bq   =  Bp . 

 

14.5.  DISJUNCTIVE NORMAL FORMS: 
 

14.5.1. Definition: Nd = { …  /  each  ,…,in  is  0  or 1,  and each  ij is 0 

or 1} is called the system of disjunctive normal forms.   Each summand is called a  minterm.  
 

14.5.2.  Corollary:   (i) Nd  has   elements.   

(ii) Pn  splits into   different equivalence classes.  

 

 Proof:  (i) There are 2n  distinct product terms of the form  ni
1x , …., ni

nx . Now the general 

form of a sum of products can be represented as 
)i,...,i(

i...ii

n1

n21
d 1i

1x … ni
nx .  In this representation, 

n1 i,,.,id  is the coefficient of ni
1x , …., ni

nx .  It is clear that 
n1 i,,.,id  = 0 or  = 1.   

Hence there exists 
n22  such representations.   This shows that   Nd   has  

n22  elements.   
 

   (ii) In the part-(iv) of the proof of the Theorem 14.4.6.,  we proved that ~/Pn   =  
n22 . 

This shows that there exists 
n22   equivalence classes. 

In other words,  we can say that   Pn   splits into  
n22  different equivalence classes. 

 

14.5.3.  Definition: A Boolean algebra   B  is said to be polynomially complete 

 if   Pn(B)  = Fn(B).  


)i,...,i(

i...ii

n1

n21
d 1i

1x ni
nx

1i
d

n22
n22
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14.5.4.  Corollaries: (i) |Pn/ ~| =  and  Pn(ℬ) = Fn(ℬ),  where  ℬ  =  {0, 1}.   

This means the Boolean algebra  ℬ  is polynomially complete.   

  (ii) If   |B|  =  m > 2,  then     |Pn(B)|  =  |Pn/~ | = <  = |Fn(B)|;   and  

so    Pn(B)   Fn(B).   This means if  |B| > 2, then  B  is not polynomially complete.   

 (iii) If   p = , …, ,  then   =  (i1, …, in).    

(iv) If   pPn,   then    p ~ , …, .  

 Proof:  (i) By the Corollary 14.5.2. (ii),  we have that   |Pn / ~|  = 
n22 . 

Since   Pn(ℬ)    Fn(ℬ)  and  | Pn(ℬ) | =  
n22  = | Fn(ℬ)|,  we have that   Pn(ℬ)  =  Fn(ℬ). 

 

(ii) is clear. 

(iii) Let   p =  )i,...,i( n1
 

n1 i,...,id 1i
1x , …, ni

nx .  Let  (j1, j2,  … jn)  be an n-tuple of   {0, 1}.  

Then  p (j1, j2,  … jn)  =   )i,...,i( n1
 

n1 i,...,id 1i
1x , …, ni

nx (j1, j2,  … jn). 

Consider the R.H.S.   

If  (i1, i2,  … in)    (j1, j2,  … jn),  then the related term is zero. 

If  (i1, i2,  … in)  =  (j1, j2,  … jn),  then the related term is equal to 
n1 j,...,jd . 

Therefore p (j1, j2,  … jn)  =  
n1 j,...,jd . 

 

  (iv)  From (iii),  we have that  
n1 i,...,id  =  p (i1, …, in). 

If    p (i1, …, in)  =  0,  then 
n1 i,...,id  =  0,  and so the term 

n1 i,...,id 1i
1x , …, ni

nx   =  0. 

So in the representation   p =  )i,...,i( n1
 

n1 i,...,id 1i
1x , …, ni

nx ,  we may remove the terms 
n1 i,...,id

1i
1x , …, ni

nx   =  0 when  p (i1, …, in)  =  0. 

If p (i1, …, in)  =  1,  then  
n1 i,...,id = p (i1, …, in)  =  1,  and so the related term   

n1 i,...,id 1i
1x , …, ni

nx   =  1i
1x , …, ni

nx . 

Hence we conclude that  p ~  1)i,...,i(p n1
 1i

1x , …, ni
nx . 

 

14.5.5.  Example: We consider P2 the set of polynomials in two variables  x1,  x2.  

Observe that the polynomial expressions  0x1
1x2

1 + 0x1
1x2 + 0x1x2

1 + 0x1x2, and  0  are 

equivalent.  So these two polynomials belongs to unique equivalence class in  Pn/ ~.   

Let us call this class as Class # 1.  

n22

n22
nmm

 )i,...,i( n1 n1 i,...,id 1i
1x ni

nx
n1 i,...,id p

 1)i,...,i(p n1

1i
1x ni

nx
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Observe that the two polynomials   0x1
1x2

1 + 0x1
1x2+ 0x1x2

1 + 1x1x2,  and x1x2  are 

equivalent.  So these two polynomials belongs to unique equivalence class in  Pn/ ~.   

Let us call this class as Class # 2.  

In this way,  we can find all  |Pn/ ~|  =    =  16  equivalence classes.    

These equivalence classes were presented in the Table-1.  

 

Table-1 

0x1
1x2

1 + 0x1
1x2 + 0x1x2

1 + 0x1x2, …, 0, …  Class # 1 

0x1
1x2

1 + 0x1
1x2+ 0x1x2

1 + 1x1x2, …, x1x2,…  Class # 2 

0x1
1x2

1 + 0x1
1x2 + 1x1x2

1 + 0x1x2, …,x1x…  Class # 3 

………………………………………………………………… 
………………………………………………………………… 
………………………………………………………………… 

 
1x1

1 + 1x1
1x2 + 1x1x2

1+1x1x2, …,1, …  Class # 16 

 

Since a term with coefficient 0 is equal to zero, we may omit the terms with coefficient 0.   

If  1  is the coefficient of a term,  then by omitting 1  there is no change in the truth value of 

the term.  So if a term has the coefficient  1,  then we may not write down the coefficient.  

Note that the expressions 1x1x2 and  x1x2  are different,  but they are equivalent polynomial 

expressions. So these two belong to unique equivalence class in  Pn/ ~.  

So we can take x1x2 has  a representative of the class to which it belongs.  

Such representatives from the equivalence classes  1 to 16 were presented in the Table-2. 

 

Table-2 

222

…, 0, …  Class # 1 

…, x1x2 , …  Class # 2 

…, x1x2
1, …  Class # 3 

…,x1x2
1, + x1x2, …  Class # 4 

…, x1
1x2, ….  Class # 5 

…, x1
1x2 + x1x2, …  Class # 6 

…, x1
1x2 + x1x2

1, …  Class # 7 

…, x1
1x2 + x1x2

1 + x1x2,…  Class # 8 
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Observe the Table-2. The expression   x1x2
1 + x1x2  is a  representative of class-4.  

Now we have that  x1x2
1 + x1x2  ~  x1(x2

1 + x2) ~ x1.1 ~ x1.    

So instead of  x1x2
1 + x1x2,  we can take x1  as the representative of class-4. 

Note that the representative  x1  got simpler form.   

In the Table-3,  we present such simple representatives. 

Table-3 

…, 0, …  Class # 1 

…, x1x2, …  Class # 2 

…, x1x2
1, …  Class # 3 

…, x1 ,…  Class # 4 

…,  x1
1x2, ….  Class # 5 

…,x2,…  Class # 6 

…,x1
1x2 + x1x2

1 ,…  Class # 7 

…, x1 + x2, …  Class # 8 

…, x1
1x2

1, …   Class # 9 

…, x1
1x2

1 + x1x2 , …  Class # 10 

…, x2
1, …  Class # 11 

…, x1 + x2
1, …  Class # 12 

…, x1
1, …  Class # 13 

…, x1
1 + x2 …  Class # 14 

…, x1
1 + x2

1 , …  Class # 15 

…, 1, …  Class # 16 

…, x1
1x2

1, …  Class # 9 

…, x1
1x2

1 + x1x2, …  Class # 10 

…, x1
1x2

1 + x1x2
1,…  Class # 11 

…,x1
1x2

1 + x1x2
1 + x1x2,…  Class # 12 

…, x1
1x2

1 + x1
1x2, …  Class # 13 

…, x1
1x2

1 + x1
1x2 + x1x2,…  Class # 14 

…, x1
1x2

1 + x1
1x2 + x1x2

1, …  Class # 15 

x1
1x2

1 + x1
1x2+ x1x2

1 + x1x2,..  Class # 16 
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14.5.6.  Note:  (i) .  Now we recollect the notation.    Let  e  {0, 1} for  1   i   n.    

Define     =     xi  if  e  =  1  =    if  e  =  0   

(ii).  For any Boolean  polynomial  f  in   x1, x2, …, xn,    

consider  [f(e1, e2, …, en)  … ]   =  m0 m1 …  m(2
n 

- 1),  where   

mi  =  f(d1, d2, …, dn)   …   and   di  =  0  or  1  for 1   I   n. 
 

14.5.7.    Example: Consider the function f(x1, x2) = ((x1x2)  )   on two 

variables  x1  and  x2,  on the Boolean algebra   B  =  {0, 1}.  

Now  f(0, 0)  =  ((0  0)1)  ((0  0)  01)  = 01 (0  01)  =  1  (0  1)   =  1   1  =  1.  

Similarly, f(0, 1)  =  0,   f(1, 0)  =  0  and  f(1, 1) = 0.   

Here we have   m0, m1, m2, m3 [because 3  =  2n - 1,  where  n  is the number of  the 

variables].   Observe that  m0  =  f(0, 0)  x1
0  x2

0  =  f(0, 0)  x1
1     =  x1

1  .    

m1  =  f(0, 1)  x1
0  x2

1  =  0   x1
1  x2  = 0.  

m2  =  f(1, 0)  x1
1  x2

0  =  0   x1   =  0,  

m3 = f(1, 1)  x1
1  x2

1 = 0   x1  x2 = 0. 

Therefore [f(e1, e2)   ]  =  m0   m1   m2  m3                                                                                  

                                                       =  0  0  0   =  .  

 

14.5.8.  Lemma: Let  f(x) be a Boolean polynomial in one variable x with coefficients from 

the Boolean algebra  B.    Then f(x)  =  (f(1)  x)  (f(0)  ).   
  

Proof:  (This proof is by inductive method).  We know that the elements of   B   and  x  are 

Boolean expressions. 
 

Step-(i): Fix b  B and suppose f(a) = b for all  a  B.   

Then   f  is a constant function and  f(1)  =   f(0)   =   b.   

Now  (f(1)  x)  (f(0)  1x ) = (b  x)  (b  1x )  =  b  (x  1x )  =  b  1  =  b  =  f(x).   

Therefore in this case,  the result is true.  
 

Step-(ii): Suppose   f(a)  =  x   for all  a  B.  Then f(1)  =  x  and  f(0)  =  x.   

Consider (f(1)  x)   (f(0)  1x )  =  (x  x)  (x  1x )  =  x  0  =   x  = f(x).   

Therefore in this case,  the result is true.   
 

Step-(iii):  Suppose the result is true for two Boolean polynomials  f(x)  and g(x). 

e
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Now   f(x)  g(x) = [(f(1)  x)  (f(0)  1x )]  [(g(1)  x)  (g(0)  1x )] 

                                                                                                                ( by supposition) 

           = (f(1)  x)  (g(1)  x)  (f(0)  1x )  (g(0)  1x )  

             = [(f(1)  g(1))  x]  [f(0)  g(0))  1x ] = [(f  g)(1)  x]  [(f  g) (0)  1x ].   

This shows that the result is true for the polynomials  f  g. 

Next we prove for  f(x)  g(x). 

f(x)  g(x) = [(f(1)  x)  (f(0)  1x )]  [(g(1)  x)  (g(0)  1x )] (by supposition) 

    = {[ (f(1)  x)  (f(0)  1x )]  (g(1)  x)}  {[(f(1)  x)  (f(0)  1x )]  (g(0)  1x )} 

         = {[(f(1)  x)  (g(1)  x)]  [(f(0)  1x )  (g(1)  x)]}              

                            {[f(1)  x)  (g(0)  1x )]     [(f(0)  1x )  (g(0)  1x }} 

         = {[f(1)  g(1)  x]  [0]}  {[0]  [f(0)  1x   g(0)]} 

         = {[(f  g)(1)]  x}  {[(f  g)(0)]  1x }. 
  

Step-(iv): Now we show that if the result is true for  h(x) = 1x .   

 [h(1)  x]  [h(0)  1x ]  =  (0  x)  (1  1x )  =  0  1x   =  1x  =  h(x). 

Since all the polynomials are written by using  x, 1x ,  b,  ,    and  1,  we may conclude that 

the result is true for all polynomials  f(x)  in one variable  x  with coefficients from the 

Boolean algebra.  Hence the lemma is proved for all polynomials  f(x)  in one variable  x  

with coefficients from the Boolean algebra. 
 

14.5.9 Lemma: Boolean polynomial   f(x1, x2, …, xn)  is equal  

to  [f(1, x2, …, xn)  x1]  [f(0, x2, …, xn)  ].   

Proof: Write  B*=  the set of all Boolean polynomials in the variables  x2, x3,…, xn.    

Since  B*  is a Boolean algebra, we may consider a Boolean polynomial in the  

variables x1, x2, …, xn as a Boolean polynomial   h   in the single variable  x1  with 

coefficients from the Boolean algebra  B*.   

Now  f(x1, x2, …, xn)  =  h(x1)  =  (h(1)  x1)  (h(0)  )   (by the Lemma  14.5.8.)   

                                    =  [f(1, x2, …, xn)  x1]  [f(0, x2, …, xn)  ].   

Hence  f(x1, …, xn)  =  [f(1, x2, …, xn)  x1]    [f(0, x2, …, xn)  ].   

The proof is complete. 
 

14.5.10. Theorem:  If  f(x1, x2, …, xn) is a Boolean polynomial,  then 

  f(x1, x2, …, xn)  =   (f(e1, e2, …, en)   …  ).  

1
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Proof: The proof is by induction on the number of variables.    

If  n  = 1,  then there is only one variable  x.   Then we have to show  f(x)  =  (f(e)  xe).    

Consider (f(e)  xe)  =  (f(1)  x1)  (f(0)  x0)  =  (f(1)  x)  (f(0)  x1).    

This is true by the Lemma  14.5.8. 

Assume the induction hypothesis, that is, the result is true for  (n -1) variables.   

Let  f(x1, x2, …, xn)  be a polynomial in  n  variables.   

f(x1, x2, …, xn)  =  [f(1, x2, …, xn) )  x1]  [f(0, x2 ,…, xn))  x1]  (by the Lemma 14.5.9.)   

=  {[(f(1, e2, …, en)   …  ]  x1}  {[(f(0, e2, …, en)   …  ]  x1
1}   

= {[f(1, e2, …, en)  x1
1   …  ] }{ [f(0, e2, …, en)  x1

0   …  ]}   

=   [f(e1, e2, …, en)   …  ].   The proof is complete..   

 

14.5.11.  Note:  (i) An expression of the form     …   is called a product term 

or minterm.  The union of such product terms is called a sum of products.  

(ii) A disjunctive normal form  (d.n.f,  in short) for a Boolean polynomial  

 f(x1, x2, …, xn) is a sum of products (of the form  …  ) which represents  f  

   

14.5.12.  Black Box Method: (To find d.n.f of a given Boolean polynomial).   

In this discussion,  the coefficients in the Boolean Polynomial   f   are taken from the Boolean 

Algebra {0, 1}.   

Now the truth table of functional values of the polynomial  f  determines the disjunctive 

normal form simply by including each product term that occurs when the function takes value 

1.   

 [If   f   do not take value 1,  then f(d1, …, dn)  =  0  and so the corresponding    

mi  =  f(d1, …, dn) . …  =  0  …  =  0].  
 

14.5.13. Example: Consider the function   

 f(x1, x2, x3) = [x1  ( )] {[(x1  x2)  ]  x1}.    
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The functional values of  f  and  f 1 are mentioned in the table.    

 (i) From the  table,  it is clear that  f  takes value 1 only when  (d1, d2, d3)  =  (1, 0, 0),  (d1, d2, 

d3)  =  (1, 1, 0),  and   (d1, d2, d3) = (1, 1, 1).   

 Therefore   m4  =  f(d1, d2, d3)    =   f(1, 0, 0)  x1
1  x2

0  x3
0 

                          =  1  x1     =  x1. ;  

 m6  =  f(1, 1, 0)  x1
1  x2

1  x3
0   =  x1x2 ;   

m7  =  f(1, 1, 1)  x1
1  x2

1  x3
1 =  1  x1  x2  x3   =      x1x2x3.   

Since  mi  =  0  for all i  {4, 6, 7}, we have that the disjunctive normal form  is              

 mi  =  x1 x1x2 x1x2x3.   

   (ii) Next we find the disjunctive normal form for .   

Observe the table.   For five values of  (d1, d2, d3)  we have (d1, d2, d3)  =  1.    

By following the same steps as in  (i),  we get that   

(x1, x2, x3)  = x1
1x2

1x3
1  x1

1x2
1x3  x1

1x2x3
1  x1

1x2x3  x1x2
1x3.   

 

14.6. CONJUNCTIVE NORMAL FORMS: 

 

In this section we discuss another normal form named as Conjunctive normal form. 

 

14.6.1. Note: (i) By the duality principle (also refer  Theorem 14.5.10.),  we have that   

f(x1, x2, …, xn)  =   [f(e1, …, en)    …  ].    

This form is called the conjunctive normal form (c.n.f.,  in short) of  the function  

 f(x1, x2, …, xn).   

 (ii) We may represent this conjunctive normal form as  follows:   

f  = +  + … + ). 

(iii) It is clear that the conjunctive normal form of a given function  f  is the complement of 

the disjunctive normal form of  f 1(x).     

(iv) In the above example,  f 1(x1, x2, x3)  =  x1
1x2

1x3
1  x1

1x2
1x3  x1

1x2x3
1  x1

1x2x3  x1x2
1x3  

is the disjunctive normal form of  f 1.   Therefore the conjunctive normal form is  

 f  =  [ ]  

    = (x1
1x2

1x3
1)1  (x1

1x2
1x3)1  (x1

1x2x3
1)1  (x1

1x2x3)1  (x1x2
1x3)1    

    =  (x1  x2  x3).(x1  x2  x3
1).(x1  x2

1  x3). (x1  x2
1  x3

1).(x1
1  x2   x3

1).  
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14.6.2.  Example: (i) Now we wish to find the disjunctive normal form of     

p  =  ((x1  +  x2)1x1  +  x2
111)1  +  x1x2  +  x1x2

1.   We list the values of     in the table.   

 Now  (0, 0)  =  ((0 + 0)10  +  0111)1 + 00 + 001  = 0.  

Similarly we get the values for   (0, 1), (1, 0), and (1, 1).    

Observe the table. We follow the block box method (See 14.5.12.).   
 

b1 b2  (b1, b2) 

0 0  0 

0 1  1 

1 0  1 

1 1  1 

 

Now we get that  p  =  0x1
1x2

1 +1x1
1x2 +1x1x2

1 + 1x1x2  =   x1
1x2 + x1x2

1 + x1x2.  

This is the d.n.f  of p.  

(ii)  Observe that   p   =   x1
1x2 + x1x2

1 + x1x2   =   x1
1x2 + x1 (x2

1 + x2)  =    x1
1x2 + x1 (1)  

=    x1
1x2 + x1   =   (x1

1 +x1)(x2 + x1)   =  (1)(x2 + x1)   =  x2 + x1.  

Note that  p  reduced to its simpler form   x2 + x1.  
 

14.6.3.  Note: To get a simple form of the given Boolean polynomial,  we may follow the 

following steps:   

Step-(i): Find the disjunctive normal form.  

Step-(ii): Reduce the d.n.f  by using the laws of  Boolean algebra.  
 

14.6.4.  Problem: Find a Boolean polynomial  p  that induces the function   f  given by the 

following table: 
 

b1 b2 b3  f (b1, b2, b3) 

0 0 0  1        

0 0 1  0 

0 1 0  0 

0 1 1  1        

1 0 0  1        

1 0 1  0 

1 1 0  0 

1 1 1  0 

p

p

p p p

p
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Solution: We marked the lines where the value of  f  is 1.   

Write   p  = x1
1x2

1x3
1 +  x1

1x2x3  +  x1x2
1x3

1  

(these product terms are related to the rows corresponding to the arrows).  

Now   p   induces the function   f.  

 

14.6.5.  Note:  Consider f  and  p  given in the Problem  14.6.4.   

p  =x1
1x2

1x3
1 +  x1

1x2x3  +  x1x2
1x3

1  

    ~  x1
1x2

1x3
1 + x1x2

1x3
1 + x1

1x2x3  (by associative and commutative laws)     

   ~  (x1
1 + x1) x2

1x3
1  +  x1

1x2x3    (by distributive law)    

   ~  x2
1x3

1 +  x1
1x2x3.  

Therefore   p ~ q  where  q  =    x2
1x3

1 +  x1
1x2x3.   

So   q   is also a solution to our  problem 14.6.4.   

That is,   =  =  f.   In other words both  q  and  p  induces the same function  f.  

 

14.6.6.   Problem:  Find the c.n.f  for   p  = x1
1x2  +  x1x2

1.  

Solution: The d.n.f  for p  was given.  One way of getting  c.n.f  from d.n.f  is  to write  p  as   

(p1)1.   We expand  p1  by using the de Morgan’s laws.   

p  = x1
1x2  +  x1x2

1   ~  (x1
1x2  +  x1x2

1)11   ~   ((x1
1x2  +  x1x2

1)1)1 

  ~  ((x1 + x2
1) (x1

1 + x2))1  ~  (x1x1
1  +  x1x2  +  x2

1x1
1  +  x2

1x2)1  

  ~  (x1x2  +  x2
1x1

1)1         (by complement laws)  ~  (x1
1 + x2

1) (x1  +  x2).  

Now   p   gets the form "product of sums form".  This form is the required c.n.f. 

 

14.7  SUMMARY: 

 
In this lesson, we studied Boolean polynomials in n variables, and equivalent expressions.  
We will make learn to express the given Boolean polynomials in terms of disjunctive normal 
form and conjunctive normal form. Few necessary examples were included for the 
convenience of the reader to learn to obtain disjunctive normal form and conjunctive normal 
form for the given Boolean polynomials. 

 
14.8  TECHNICAL TERMS: 
 
System of normal forms 
Let   N   be a subset of   Pn.  Then   N  is said to be a system of normal forms if it satisfies the 
following two conditions:  (i)  p  Pn     there corresponds   q  N   such that  p ~ q;  and 
(ii)   q1, q2  N,   q1   q2       q1 ≁  q2. 
 
Product term (or minterm). 

An expression of the form     …   is called a product term or minterm. 

q p
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Disjunctive normal form: 
 Boolean polynomial  f(x1, x2, …, xn)  which is a sum of products (of  the  

form  …  ) that represents the given Boolean polynomial  f is named as 

disjunctive normal form of f. 
 
Conjunctive normal form:  
The form   f  = +  + … + ) is named as the conjunctive normal form of f. 

 
14.9  SELF ASSESSMENT QUESTIONS: 
 
1. Write the Boolean function  values for f : A2 → A, where A = {0, 1} with  

f (x1, x2) =    211 xxx  .   
Ans / Solution:  

  (x, y) f 
(0, 0) 0 
(0, 1) 1 
(1, 0) 0 
(1, 1) 1 

 
 
2. Consider the Boolean polynomial f (x, y, z) = x  (y  z1).   If B ={0, 1}, compute the  

truth table of the function f : B3 → B defined by f. 

[ that is, If  B = {0, 1}, compute the truth table of the function f: B3 → B defined by f]. 

Ans: 

x y z  1zyx   

0 0 0     0 
0 0 1     0 
0 1 0     0 
0 1 1     0 
1 0 0     1 
1 0 1     0 
1 1 0     1 
1 1 1     1 
 
 
3. Rewrite  (or simplify) the given Boolean polynomial to obtain the requested format. 
    (i).   (x  y1 z)  (x  y  z) ;  two variables and one operation. 
    (ii). (y  z)  x1 (w  w1)1 (y  z1) ;  two variables and two operations. 
 
Ans:  (i). x  z.     (ii). y  x1. 
 

 
4 . Write the disjunctive and conjuctive normal form for 

 f (x1, x2, x3) = [   321 xxx   ]     1321 xxxx  ,  by writing minterms and maxterms. 
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Ans / Hint / Solution: Minterms : 321 xxx  ,   321 xxx  ,     321 xxx   

   Disjunctive normal form :      321321321 xxxxxxxxx   

Maxterms : 321 xxx  ,   321 xxx  ,  321 xxx  ,  321 xxx  ,   321 xxx  . 

  Conjunctive normal form : 

         321321321321321 xxxxxxxxxxxxxxx  . 

 
5. Find the c.n.f. for   p  =x1

1x2  +  x1x2
1.  

Ans / Hint / Solution: (x1
1 + x2

1) (x1  +x2).  
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LESSON - 15 

FINITE BOOLEAN ALGEBRAS 
 
 

OBJECTIVE: 
 
 To know the Extended notion of lattice:  Boolean algebra. 
 To know the Important theorem namely representation theorem   
 To Learn various properties of Boolean algebras  

 
 STRUCTURE: 
 

15.1  Introduction[9[1 
15.2  Boolean algebras and Properties  
15.3  Representation Theorem   
15.4  Summary 
15.5 Technical Terms 
15.6  Self Assessment Questions 
15.7  Suggested Readings 
 
15. 1. INTRODUCTION: 

 

In 1854, George Boole  (1815 - 1864)  tried to find a mathematical model for human 
reasoning, and he introduced an important class of algebraic structure. In his honor this 
structure is called as ‘Boolean algebra’.  This Boolean algebra is a  special type of lattice.   
 

Boolean Algebra is an algebra of logic.  One of the earliest investigators of symbolic 
logic was George-Boole who invented a systematic way of manipulating logic symbols which 
was referred as Boolean Algebra.  It has become now an indispensable tool to computer 
scientists because of its direct applicability to switching circuit theory in physics, and the 
logical design of digital computers.  The symbols 0 and 1 used in this unit have certian 
logical significance. 
 
15.2.  BOOLEAN ALGEBRAS AND PROPERTIES: 

 

Now we recollect some important definitions and examples which are essential in the study 
of this Lesson.  
 

15.2.1.  Definition: A complemented distributive lattice is called a Boolean algebra (or a 

Boolean lattice).  

 

15.2.2   Note: (i) By the Theorem 13.4.5. (of the lesson 13), we have that every element   x   

of a complemented distributive lattice, has unique complement (which is denoted by   x1).   

(ii)  From (i), we can conclude that every element   x   of a Boolean algebra,  has unique 

complement.   
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15.2.3 Notation:   Henceforth, we use  B  to denote a Boolean algebra.  So B   denotes a set 

with the two binary operations    and   ,  with zero element  0  and a unit element  1,  and 

the unary operation of complementation.   

We write    B  =   (B,  , , 0, 1)  or   B =  (B, , ), in short.   

 

15.2.4 Examples: (i) Let  M  be a set and  P(M)  be the power set of   M.   

Then the system (P(M) , , , , M1)  is a  Boolean Algebra. Here    and  are the set-

theoretic operations: intersection and union, and the complement is the set-theoretic 

complement  (that is, M \ A = A1).     

In this Boolean algebra, the elements    and   M  are the “universal bounds”.   

If   M contains exactly   n   elements, then   P(M)   contains exactly   2n   elements.  

(ii) Let   ℬ   be the lattice   V1
2,  where the operations are defined by  

 

 

 

     0     1        0   1    1  

  0   0    0    0    0   1    0     1 

  1   0    1    0    1   1    1     0 

 

Then  (ℬ, ,, 0, 1, 1)  is a Boolean algebra.   

(iii) Consider the Boolean algebra  ℬ given in  (ii).  Let   n   be a positive integer.   

Consider the set    ℬn,  the Cartesian product of    n   copies of   ℬ.  

The set  ℬn   is a  Boolean algebra with respect to  the operations given below:          

(i1,…, in)   (j1,…, jn)  :=  (i1  j1, …, injn),   

(i1 ,…, in)    (j1,…, jn)  :=  (i1 j1, …, injn),  (i1,…, in)1  :=  (i11, …, in1),  and       

0  =  (0, …, 0),   1  =  (1, …, 1) 

(iv) Suppose  ℬ1 , ℬ2 ,  … ℬn  are Boolean algebras.   

Consider  ℬ = ℬ1 ℬ2   …  ℬn, the Cartesian product of the Boolean algebras  

ℬ1 ,ℬ2 ,  … ℬn .  

We define the operations    ,     and  complementation in   ℬ as follows:   

V1
2 

0 

1 
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          (i1,…, in)   (j1,…, jn)  :=  (i1  j1, …, in  jn), 

          (i1 ,…, in)    (j1,…, jn)  :=  (i1  j1, …, in  jn), 

          (i1,…, in)1  :=  (i1
1, …, in

1),  and   0  =  (0, …, 0), 1  =  (1, …, 1) 

where   ik,  jk  ℬk   for 1  k   n.   

It is easy to verify that   ℬ  =  ℬ1 ℬ2   …  ℬn   is a  Boolean algebra.   

So   ℬ    is the direct product of the given Boolean algebras.  

 

15.2.5 Theorem (De Morgan’s Laws):  For all   x,  y   in a Boolean Algebra   B,  we have  

that                      (x  y)1   =   x1   y1   and   (x  y)1  =  x1  y1.  

Proof:  We have (x  y)    (x1  y1)   

                           =  (x  x1  y1)   (y  x1  y1)  (by distributive law)   

                           =  (1  y1)    (1  x1)               (by complement laws)  

                           =  1  1                                     (by universal bound laws)   

                           =  1                                         (by idempotent laws).  

Also  (x  y)  (x1  y1)  =  (x  y  x1)  (x  y  y1)  (by distributive law)   

                                        =  (0  y)  (x  0)           (by complement laws)   

                                        =  0  0                        (by universal bound laws)  

                                        =  0                              (by idempotent laws).  

From the facts proved above,  we can conclude that   x1  y1   is the complement of   x  y.    

The other part follows from the duality principle.  
 

15.2.6 Corollary: In a Boolean   algebra   B,  we have  x  y   x1  y1  for  all  x,  y  B. 

Proof:  We have   x  y    x  y  =   y  (by the definition of   )      

                                           (x  y)1   =   y1         (by taking complement)  

                                        x1   y1  =  y1        (by the Theorem  15.2.5)   

                                             x1  y1                (by the definition of   )  
 

15.2.7  Theorem:  In a Boolean algebra   B,   the following conditions are equivalent:   

(i)   x  y;    (ii)   x  y1  =  0 ;  (iii)  x1  y  =  1 ;    (iv)  x  y  =  x ;  and     

(v)   x  y  =  y   for all   x,  y  B. 

Proof: (i)  (ii):            x  y     x  =  x  y 

                                                    x  y1  =  x  y  y1  =  x  0   =  0.  

   (ii)  (iii):   (x  y1)  =  0   
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                        (x  y1)1  =  01  =  1     x1  y  =  1  

(iii)  (iv):  (x 1 y)  =  1   

                                x  1  =  x  (x1  y)   

                                  x  =  (x  x1)  (x  y)  =  0    (x  y)  =  x  y.  

(iv)  (v):   x  y  =  x 

                    (x  y)  y  =  x  y     y  =   x  y.  

(v)   (i)  follows from the definition of     .  

 

15.2.8  Definition: Let   B1   and   B2  be Boolean algebras.  Then a mapping  f : B1 B2  is 

said to be a (Boolean) homomorphism from  B1   into   B2  if  f  is a (lattice) homomorphism 

and   f (x1)  =  (f (x))1  for all   x  B.      

Equivalently, we can define the Boolean homomorphism as follows:   

Let   B1   and   B2 be Boolean algebras.  A mapping  f : B1B2  is said to be a (Boolean) 

homomorphism from  B1   into   B2  if it satisfies the following three conditions:    

(i)   f (x  y)  =  f (x)  f (y);        

(ii)  f (x  y)  =  f (x)  f (y);  and      

(iii)    f (x1)  =  (f (x))1,  for all  x,  y  B1.  

 

15.2.9  Definition:  Let  f :  B1B2  be a Boolean homomorphism.    

(i) If  f   is one-one,  then we say that   f   is a monomorphism.    

(ii)  If   f   is onto, then we say that   f   is an epimorphism.   

(iii)  If  f   is a bijection,  then we say that   f   is an isomorphism.   

If there is a Boolean isomorphism between   B1   and   B2,  then  we write   B1 b  B2.  
 

15.2.10 Theorem:  Let   f : B1B2   be a Boolean homomorphism.  Then     

(i)  f(0)  =  0,   f(1) = 1;     

(ii)  for all   x,  y  B1,   x  y    f(x)   f(y);  and    

(iii)  f(B1)  is a Boolean subalgebra of   B2.  
 

Proof: Let   a,  b  B1. 

(i) Now  f (0)  =  f (a  a1) (by complement law)  

                   =  f (a)   f (a1)    (since f  is a homormorphism)   

                  =  f (a)   (f(a))1   (since f  is a homormorphism)  

                 =  0                       (by the complement laws).   
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Also   f (1)  =  f (a  a1)          (by the complement law)                     

                    =  f (a)  f (a1)  (since f is a homormorphism)   

                    =  f (a)    ((f (a))1  (since f is a homormorphism)   

                   =  1 (by complement law).   

The proof is complete for  (i).  

    (ii) Suppose  a  b.   

Then  a  =  a  b 

           f (a)  =  f (a  b)  =  f (a)  f (b)           (since f is ahomormorphism)   

             f (a)   f (b)  (by the definition of  ).  
 

(iii)  To show that  f (B1)   is a Boolean subalgebra,  it is enough to prove that   f (B1)  is 

closed under the operations   ,  ,  and 1 .   Now let  f (a),  f (b)   f (B1).    

So   f (a)   f (b)  =  f (a  b)     f (B1)  (since  a  bB1);   

And  f (a)  f (b)  =  f (a  b)  f (B1)   (since  a  b  B1);   

and  [f(a)]1  =  f(a1)   f (B1)   (since   a1  B1).  

This shows that   f (B1)   is a Boolean subalgebra of   B2.  
 

15.2.11 Example: (i)  If   M  N,  then the mapping   f : P(M) P(N) defined by  f(A) = A, 

is a lattice monomorphism,   but not a Boolean homomorphism.    

To verify this, let A  P(M).   

Now   f(A1)  =  f(M \ A)  =  M \ A    N \ A  =  N \ f(A)  =  (f(A)1.     

This shows that   f   is not a Boolean homomorphism.  

Also  f (1)  =  f (M)  =  M  N  =  the unit element in  P(N).  

    (ii) Suppose   M = {1, …, n}.   Then  {0, 1}n   and   P(M) are Boolean algebras.    

The mapping  f : {0, 1}nP(M)   defined by     f ((i1, …, in))  =   {k  /  ik = 1},   is a Boolean 

isomorphism.  (verification is straight forward). 

    (iii) Let   X   be a set,   and   A a subset of   X.    

We know that the characteristic function of   A   is defined as:    

A : X {0, 1};   x↦







A   x if   0

A   x if   1
.   

Define  h : P(X)   {0, 1}x  as follows: h(A)  =  A .  

This mapping   h   is a Boolean isomorphism.  So   P(X)  b {0, 1}x.  
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15.2.12 Definitions:  If x  [a, b] = {v  L  a ≤ v ≤ b} and y  L  

with x  y = a and x   y = b, then y is called a relative complement of x with respect to [a, 

b]. If all intervals [a, b] in a lattice L are complemented, then L is called relatively 

complemented. If L has a zero element and all [0, b] are complemented, then L is called 

sectionally complemented. 

 

15.2.13 Theorem: Let  L   be a lattice.  Then we have the following:   

(i)   L   is a Boolean algebra     L   is relatively complemented   

(ii)   L is relatively complemented    L is sectionally complemented.   

(iii)   L  is finite and sectionally complemented     every  non-zero element   a   of   L is a 

join of finitely many atoms.  

(iv)   If B is a finite Boolean algebra,  then every element   x  in  B is equal to the union of 

atoms that are    x.  
 

Proof: (i)   Let   L   be a Boolean algebra and let   a  x  b.  Define   y  :=  b  (a  x1).    

Now we prove that   y   is a complement of   x in  [a, b].   

We have    x  y  =  x  (b  (a  x1))    

                            =  x  (a  x1)       (by modular law and   x  b)   

                            =  (x  a)  (x  x1)      (by distributive law)    

                            =  x  a                         (since  x  x1  =  0)    

                           =  x                               (since   x  a) .  

Also we have   x  y  =  x  (b  (a  x1))   

                                   =  x  (b  a)  (b  x1))        (by distributive law)            

                                   =  x  a  (b  x1)            (since   a  b)   

                                   =  x  (b  x1)               (since   a  x)    

                                  =  (x  b)    (x  x1)    (by distributive law)    

                                 =  b  1   (since   x  b,  and by complement law)            

                                 =  b  (by universal bound laws).  

This shows that   y  is the complement of   x   in [a, b].  

Thus   L   is relatively complemented.  

  (ii) Suppose   L   is relatively complemented.  Then   by definition  [a, b]  is complemented  

for all   a,  b  L  such that   a  b.   

Since 0 ≤ b, we have   [0, b]  is complemented for all   b  L.   
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Therefore  L  is sectionally complemented.  

  (iii)  Let   a  L.   Suppose    { x  x  is an atom and   x  a} =  {p1, …, pn}.  

Write   b  =  p1  …  pn.     

Since each   pi  a ,  we have that  b  a.   We have to show that   b  = a.    

In a contrary way,  suppose   b  a.   Suppose    c   is the complement of   b  in  [0, a].   

Now   c    0  (if  c  =  0,  then  a  =  b   c  =  b  0  =  b,  a contradiction).   

Since   c   is non-zero,  there exists an atom    p   such that  p   c.   

Since   p   c   a,  we have that p  {p1, …, pn}.  

Now   p  =  pi  b.    So   p  =  p  b   c  b  =  0,  a contradiction.    

Hence   a  = b.   Therefore  we get that   a  =  p1  …  pn.  

(iv) Follows from the facts proved above.  

 

15.3.  REPRESENTATION THEOREM: 

 
In this section we prove a representation theorem of Boolean algebra, namely Stone’s 
Representation Theorem.  
 
15.3.1 Theorem: (Representation Theorem) Let   B   be a finite Boolean algebra, and   A   

denotes the set of all atoms in   B.  Then B is Boolean isomorphic to   P(A).   

That is,  (B, , )  b  (P(A), , ).  
 

Proof: Part-(i): Let   v  B  be an element and  write  

 A(v)  := {aA  /  a  v}  :=  {a  /  a   is an atom and   a  v}.  

Consider the mapping    h :  BP(A)  defined by  h(v)  =  A(v).  

We show that   h is a Boolean isomorphism.    

Part-(ii): In this part,  we show that h  is a Boolean homomorphism.    

Let   a    be an atom and for   v, wL.   we have    a  A(v  w)   

                      a  v  w    a  v   and   a  w   (by       definition of ) 

                      a  A(v)   A(w).    

This proves that   h(v  w) =  h(v)  h(w).   

Also we have  a  A(v  w)    a  v  w 

                         a  v   or   a  w (by definition of ) 

                           a  A(v)   A(w).  

This shows that    h(v  w)  =  h(v)  h(w).  
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Now   a  A(v1)    a   v1      a  =  a  v1  (by the definition of   )   

           a  v  =  a  v1  v      a  v  =  a  0  =  0   a 

            a ≰ v   (by the definition of   )       a  A(v)      a  A \ A(v).   

This shows that   h(v1)  =  (h(v))1.  Hence   h   is a Boolean isomorphism.    
 

Part-(iii): Note that  h(0) =   (by the definition of  h).   

By  the Theorem  15.2.13 (iv),  we have that every   v  B  can be expressed as the join of 

finitely many atoms:   v =  a1  …  an   with  a1  v,  for  all  i.    

Now we show that  h   is  one-one.   

For this,  suppose h(v) = h(w).  That is,  A(v) = A(w).    

Then   ai  A(v)    ai A(w)     ai  w.    This is true for  all i.   

Therefore   v   =  a1  …  an  w     v  w.  

In the same  way,  we can show that    w  v.    

Hence    v =  w.  This shows that  h  is one-one.  
 

Part-(iv): Now we show that  h  is onto.  For this,  take  C  P(A).     

Suppose   C  =  {c1, …, cn},  and write   v = c1  …  cn.   

Now  A(v)   C,   and so   h(v)   C.   

Conversely, a  h(v),  then   a   is an atom with   a  v  =  c1  …  cn and so  a   ci,  

for some  i  {1, …, n}.   Since  a  and  ci  are atoms,  we have that   a =  ci  C.   

Therefore   h(v)    C.     

Hence  h(v)  =  C.   This shows that  h  is onto.  The proof is complete..  

 

15.3.2 Theorem: (i)  The cardinality of a finite Boolean algebra   B   is always of the form  

2n, where  n  is the number of atoms in B.  Also  B b P({1, …, n}).  

(ii)  If    B1, B2 are two finite Boolean algebras such that the number of atoms in each  is   n,  

then we have that  B1  b P({1, …, n})  b B2,   and so   B1 b B2.  

(iii)  By the observation made in the Example 15.2.11 (ii), we have that  for every finite 

Boolean algebra  B  {0}, there is some   n  ℕ   with    B b {0, 1}n .  

 

15.3.3   Note:  The lattice of the divisors of 30, that is, the Boolean algebra 

 B = ({1, 2, 3, 5, 6, 10, 1, 30}, gcd, lcm, 1,  30, complement with respect to 30), has 8 = 23 

elements.   So it is isomorphic to the eight element Boolean algebra   P({a, b, c}) (that is, the 

power set of three elements) for some three distinct elements   a, b, c.  
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15.3.4  Note: In the following,  we present all non-isomorphic Boolean algebras of order     

8  (=  2 3).   

 

 

 

 

 

 

 

 

 

 

 

 
 

15.3.5 Remark: (i)  Every finite Boolean algebra is isomorphic to the Boolean algebra  P(A)   

where    A   is set of all atoms of   B.      

(ii) In case of infinite Boolean algebras we have the following result: "if   B  is an infinite 

Boolean algebra,  then there is a set  M  and a Boolean monomorphism (called  “Boolean 

embedding”) from  B  to  P(M)".  This result is  known as Stone’s Representation Theorem.  

 

15.3.6 Definition:  Let  B  be a Boolean algebra and let  X  be a set.  For any two  

mappings  f   and   g   from   X   into  B,  we define the functions    

f  g,  f  g,  f 1,  f0,  f1 from  X  into  B,  as follows:  

  f  g : XB  by  (f  g) (x)  =   f(x)  g(x);     

  f  g :  XB  by   (f  g)(x)  =   f(x)  g(x);   

  f 1 : XB  by   (f 1)(x)  =  (f(x))1;     

 f0 : XB  by  f0 (x)  =  0;  and  f1 : XB  by  f1(x)  = 1 for all  x  X.    

 

15.3.7 Result: Let  B  be a Boolean algebra and let  X  be a set.  For any two mappings  f    

and   g   from   X   into B, we defined the functions   f  g, f  g,  f 1,  f0,  f1 from X into B, in 

the definition 15.3.6.    

(i)  Write BX  = the set of all mappings  from  X  into  B.    

Then  (BX,   ,  , f0 , f1, 1)  is   a Boolean  algebra.    

ℬ3 

ℬ0=  V1
1 ℬ1=  V1

2 ℬ2=  V1
4 
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(ii) If X  =  Bn (the Cartesian product of  n copies of  B),  then   we write    

Fn(B)  :=  
nBB  (the set of all functions from  Bn  to  B).  

Now it is clear that    Fn(B)   is Boolean algebra. 

15.3.8 Theorem: If S1 = {x1, x2, …..xn} and S2 = {y1, y2, …. yn} are any two finite sets with 

n elements, then the lattices (P(S1),  ) and (P(S2),  ) are isomorphic.  

Consequently, the Hasse diagrams of these lattices may be drawn identically. 

Proof: Arrange the sets as known in Fig. 1,  

so that each element of S1  is directly over the correspondingly numbered element in S2 

 

 

Fig. 1 

 
Let A be a subset of S1 

Define f (A) = subset of S2 consisting of all elements that correspond to the elements of A . 

 

 

 

 

 

It can be easily seen that f is one-one and onto.  

Also A  B if and only if  f (A)  f (B) for all A, B  P(S1). 

Therefore the lattices (P(S1), ) and (P(S2), ) are isomorphic. 

 
15.4  SUMMARY: 
  
This unit provided the fundamental idea of the algebraic system namely Boolean algebra with 
two binary operations (join and meet) and a unary operation (complementation).  Several 
properties of the Boolean algebras were discussed. The reader able to know the applications 
of Boolean algebra in various branches like computer science, electrical engineering 
(switching networks), and so on. Particularly, devices such as mechanical switches, diodes, 
magnetic dipoles, and transistors are two state devices. In case of two state devises, the 
Boolean logic can be applied. The important example of finite Boolean algebra is the power 
set of A for any finite set A. Few examples and fundamental results related to Boolean 
algebra were included for better understanding of the reader. 
 
15.5  TECHNICAL TERMS:  
 
Boolean algebra:  
A complemented distributive lattice is called as Boolean algebra.  

S1  : x1  x2 ... xn 
 
 
 S2  : y1 y2 …  yn 

 S1  : x1  x2 x3 x4 …xn 
 
 S2  : y1 y2 y3 y4 …yn 

A 

f (A) 



 Advanced Discrete Mathematics                  15.11                             Finite Boolean Algebras          

Finite Boolean Algebra:  
A Boolean Algebra with finite number of elements is called a finite Boolean Algebra. 
 
De Morgan’s Laws:   
For all   x,  y   in a Boolean Algebra   B,  we have  that (x  y)1   =   x1   y1   and    
(x  y)1  =  x1  y1.  These two laws are called as De Morgan Laws. 
 
Boolean homomorphism  

Let   B1   and   B2 be Boolean algebras.  A mapping  f : B1B2  is said to be a (Boolean) 
homomorphism from  B1   into   B2  if it satisfies the following three conditions:    
(i)   f (x  y)  =  f (x)  f (y);  (ii)  f (x  y)  =  f (x)  f (y);  and      
(iii)    f (x1)  =  (f (x))1,  for all  x,  y  B1.  
 
Representation Theorem 
 Let   B   be a finite Boolean algebra, and   A   denotes the set of all atoms in   B.  Then B is 
Boolean isomorphic to   P(A), the power set of A. 
 
15.6  SELF ASSESSMENT QUESTIONS: 
 

1. Find: Whether or not the lattice D20 ={1, 2, 4, 5, 10, 20 }is a Boolean algebra ?  

Ans:  The number of elements in the given set is six.  We know that in any Boolean algebra the 
number of elements is of the form 2 n .   Here  6  2 n (for any positive integer n), and hence the 
given set can not be a Boolean algebra. 
 
2. Whether or not the lattice  D30 = {1, 2, 3, 5, 6, 10, 15, 30} a Boolean algebra ? 
Ans:  The given set has 23elements.  This set is Boolean isomorphic to the power set of a set 

of three elements. and hence it is a Boolean algebra. 

 

3.  Let S = {a, b, c}, T = {2, 3, 5}. Show that the Boolean lattices (P(S), ) and  
(P(T) , ) are isomorphic.  
Ans:  Define f : P(S)  P(T) by f ({a}) = {2}, f ({b}) = {3}, f ({c}) = {5}, 
 f ({a, b}) = {2,3}, f ({b, c}) = {3, 5}, f ({a, c}) = {2, 5}, f ({a, b, c}) = {2, 3, 5},  
f () = .  Then f is an isomorphism. 
 
4.  Show that ({1, 2, 3, 6, 9, 18}, gcd, lcm) does not form a Boolean algebra for the set of 
positive divisors of 18.    
Ans:  (Similar answer as in above 1). The number of elements in the given set is six.  We know 
that in any Boolean algebra the number of elements is of the form 2 n .   Here  6  2 n (for any 
positive integer n), and hence the given set can not be a Boolean algebra. 
 
5.  Define the system Boolean algebra and give two examples. 
Ans: (Refer: Definition 15.2.1, and Examples 15.2.4.) 
 
6. State representation theorem and prove it. 
Ans: (Refer: Theorem 15.3.1.) 
 
7.  Give all the non-isomorphic Boolean algebras of order     8  (=  2 3).   

Ans: (Refer Note 15.3.4) 
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8.  If  L  is a lattice, then prove the following:   

(i)   L   is a Boolean algebra     L   is relatively complemented   

(ii)   L is relatively complemented    L is sectionally complemented.   

(iii)   L  is finite and sectionally complemented     every  non-zero element   a   of   L is a 

join of finitely many atoms.  

(iv)   If B is a finite Boolean algebra,  then every element   x  in  B is equal to the union of 

atoms that are    x.  

Ans: (Refer: Theorem 15.2.13.) 
 
9. State and Prove Demorgon Laws. 
Ans: (Refer: Theorem 15.2.5.) 
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LESSON 16 

IDEALS, FILTERS AND SOLUTIONS OF 
BOOLEAN EXPRESSIONS 

 
OBJECTIVE: 
 
 To define the substructure ideal in Boolean algebra  
 To understand Maximal ideal, filters in Boolean algebra  
 To Learn to find the solutions of Boolean equations.  
 To have proper understanding of the substructures of Boolean algebras. 
 To develop skills in solving problems. 

 
STRUCTURE: 
 

16.1  Introduction 
16.2  Ideals  
16.3  Filters  
16.4  Solutions of Boolean Equations 
16.5  Summary 
16.6  Technical Terms 
16.7  Self Assessment Questions 
16.8  Suggested Readings 
 
 

16.1.  INTRODUCTION:  
 

In this Lesson, we define the substructures ideals, and filters in Boolean algebras.  In the later 
sections we provide a procedure to find the solutions of Boolean equations.  

 
16.2.  IDEALS:  

 
We define the substructure namely ideal  and maximal ideal of a Boolean algebra.  
 
16.2.1.  Notation : Let   B   be a Boolean algebra and   b,  c  B.  Then we write  b  +  c  
instead of  b  c,   and   bc  instead of  b  c. 
 
16.2.2.  Definition:  Let  B be a Boolean algebra, and  I  B.  The subset   I   is said to be an 
ideal in B  (in symbols, we write   I    B)  if   I   is non-empty and if  
                               ib  I   and   i + j  I    for all   i, j   I   and   b  B. 
 
16.2.3  Result: Let B be a Boolean algebra and  I  is an ideal in B.   If we take   b =  i1,  then 
we get that   0  =  i1  i   =   b  i    I.   Thus   0  I   for every ideal   I   of a Boolean 
algebra  B. 
 
16.2.4  Example: (i) Let   B   be a Boolean algebra.  The subsets  
{0}   and   B   of the set  B  are ideals of the Boolean algebra B.  These two ideals are called 
trivial ideals. All the other ideals of  B,  if exist,  are called proper ideals of   B. 
 

-
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(ii)   Let   A   be a non-empty set.  Write   B  =  , the power set of  A.  Then   B  

together with the operations   (where    is  the set theoretic intersection),   (where   is the 
set theoretic union)  is a Boolean algebra. 
Write   I  = {X  /  X  is a finite subset of   A}.  
 It is clear that  I is a non-empty subset of   B.  

Let   X,  Y     I , Z    B    X, Y  are finite subsets of  A. 

                                             X  Y ,  X  Z   are finite subsets of  A 

                                              X  +  Y,  X.Z  are finite subsets of  A 

                                             X  +  Y,  X.Z    I. 

This shows that   I  is an ideal of  B. 
 
16.2.5 Definition: Let  B1,  B2   be Boolean algebras  and  h : B1 B2  a Boolean 
homomorphism.  Then the set  {b  B1   h(b) = 0} is called the kernal of  h, and the set is 
denoted by  Ker h. 
 
16.2.6 Note:  Let h : B1 B2 be a Boolean homomorphism. Then Ker h   is an ideal  
 of   B1. 
 [Verification: Let x,  y    Ker h,  b  B    h(x)  =  0  and  h(y)  =  0 

  h(x  y)  =  h(x)  h(y)  =  0  0  =  0   and h(x  b)  =  h(x)  h(b)  =  0  h(b)   =  0 

    x  y ,  x  b    Ker h.   This shows that Ker h  is an ideal of  B1]. 

 
16.2.7  Theorem: Let  B  be a Boolean algebra and   I   a non-empty subset of  B.   
Then the following conditions are equivalent: 
   (i)   I    B  (That is,  I  is an ideal of B); 

   (ii) If   i, j    I   and   b  B   such that   b     i,  then   i + j  I   and    b  I. 

   (iii) There exists a Boolean algebra  B1  and a Boolean homomorphism   h : B  B1  such 

that   I  =  Ker h.  

Proof: (i)   (ii):   Let   i, j  I  and   b  B such that   b    i. 

Since   I   is an ideal of  B,  we have that   i  +  j    I.   

Since    b    i,  and  I   is an ideal,   we have that  b  =  b  i  =  bi   I. 

 
(ii)  (iii): Let  I  satisfies the condition (ii). Now define a relation   ~  on  B  by   

                           b1 ~ b2    b1 + b2  I.   

Then ~  is an equivalence relation.  

The equivalence class containing b  B is denoted by  [b]. 

Consider the set  B/~   of all equivalence classes. 

We define the operations  +,  .  and  "." on  B/~  as follows: 

         [b1] + [b2]  =  [b1 + b2],   and   [b1] [b2]  =  [b1b2].   

)A(
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Now we verify that these two operations on  B/~ are well defined.   

For this,   suppose  [b1]  =  [c1]  and  [b2] = [c2].  This implies 

 b1 ~ c1   and    b2 ~ c2      b1 + c1  I   and   b2 + c2  I   

  b1 + b2 + c1 + c2  I.       b1 + b2  ~  c1 + c2       [b1 + b2] = [c1 + c2].   

This shows that the operation  +  on  B/~  is well defined. 

Now   [b1]  =  [c1]  and  [b2] = [c2].  This implies  

  b1 ~ c1   and    b2 ~ c2     b1 + c1  I   and   b2 + c2  I   

   b1 + b2 + c1 + c2  I.     

   b1b2 + c1c2   I   (by (ii) and since b1b2 + c1c2   b1 + b2 + c1 + c2) 

  [b1b2]  =  [c1c2].   

This shows that the operation product on B/~  is well defined. 
Now it is easy to verify that  (B/~ + , .)  is a Boolean algebra with zero  [0]  and unit [1].  
Define a mapping  h : B  B/~ ,  by  h(b)  =  [b].   

Let   a,  b1, b2   B.    Now h(b1 + b2)  =  [b1 + b2]  =  [b1] + [b2]  =  h(b1) + h(b2),  and    

h(b1 . b2) = [b1 . b2]  =  [b1] . [b2]  =  h(b1) . h(b2).  

We know that    a + a1  =  1     [a] + [a1]  =  [1]     [a]1  =  [a1]    (h(a))1   =  h(a1). 

This shows that  h  is a  Boolean homomorphism.   

Now we show that  Ker h  =  I.      

Let  b    Ker h     h(b)  =  [0]    [b]  =  [0]    b - 0    I     b    I. 

This shows that Ker h  =  I.  

 
(iii)  (i):  Proof follows from the Note 16.2.6. 
 
16.2.8 Definition:  Let  B  be a Boolean algebra and   I  an ideal of  B.   
Now define a relation   ~  on  B  by   b1 ~ b2    b1 + b2  I.   
This is an equivalence relation.  
The equivalence class containing   b    B  is denoted by  [b]. 

Consider the set   B/ ~   of all equivalence classes. 

We define the operations  +,  .  and  "." on  B/ ~  as follows: 

         [b1] + [b2]  =  [b1 + b2],   and   [b1] [b2]  =  [b1b2].   

In the proof of the Theorem 16.2.7,  we verified that these two operations on   B/ ~  are well 

defined,  and   (B/~ + , .)  is a Boolean algebra with zero  [0]  and unit [1].  

This Boolean algebra  (B/~, + , .)  is called the Boolean factor algebra and it is denoted by  
B/I. 
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16.2.9  Example: (i) Let   M  be a set,  and  N  M.   

We know that (N)  and  (M)  are Boolean algebras. 

Since   N   M,  we have that   (N)  (M),  and so (N)  is an ideal of  (M). 

 
 (ii) For  [p]  Pn / ~,  we define  ([p])  = { [p] [q]  /  q  Pn}.  

Now  ([p])  is an ideal of   Pn/~. 

 
16.2.10 Definition: Let  B   be a Boolean algebra.  
    (i) Suppose b    B.    The set { bc    c  B}  is denoted by  (b).  
It is easy to verify that the set   (b)   is an ideal of  B.   
This ideal  (b)  is called a principal ideal.   
 
   (ii) Let   M   be an ideal of   B  such that  M    B.  The ideal   M   is said to be a maximal 

ideal of  B  if it satisfies the following condition: 

 I   is an ideal of   B,  and   M    I    B        M  =  I  or   I  =  B. 

 

16.2.11 Theorem: Let  B  be a Boolean algebra and  b  B.  
Then  (b)  =  {a  B  /  a  b}. 
 
Proof: We know that  (b)  =  { bc  /  c  B }.   Write   X  =  {a  B  /  a  b}. 

Now we have to show that  (b)  =  X. 

Let  x    (b)     x  =  bc  for some   c    B   x  =  b  c    b     x    X. 

 
Converse:  Let   y   X    y    b    y  =  b  y  =  by   (b). 
This shows that  (b)  =  X. 
 
16.2.12  Theorem: Let  M  be an ideal of a Boolean algebra   B,  then the following two 
conditions are equivalent: 
 
   (i)   M  is a maximal ideal. 
 
  (ii)   b  B        b  M  or  b1   M,  but not both. 
 
Proof: (i)  (ii):  Part-(i): In a contrary way,  suppose that there exists   b    B  such that  b  

  M  and   b1   M.   Write   J  =  {x + m  /  m   M,  b    B  and  x    b}.   

Now    M    J    and    b    J \ M.   So   M   is a proper subset of   J. 

 
Part-(ii): Now we verify that   J   is an ideal of   B. 

Let   x1 + m1,  x2 + m2  J   and  c    B   with  x1   b,  x2   b,  m1   M,  m2   M. 

Now   x1   b,  x2   b         x1 +  x2  =  x1  x2   b. 

 

    

 

 


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Also  m1,  m2   M   and   M  is an ideal     m1 + m2   M. 

Therefore (x1 + m1) + (x2 + m2)  =  (x1 + x2) + ( m1 + m2)    J. 

Consider  (x1 + m1)c   =  x1c + m1c    J    

[because  x1c  =  x1  c    x1     b   and   m1c    M  (since  M  is an ideal)]. 

This shows that   J   is an ideal containing   M  {b}. 

By the definition of   J,  we can conclude that  J  is the ideal generated by   M  {b}. 

Also J contains M properly. 
 
Part-(iii): Now   M  J  B   and  M  is a maximal filter       M  =  J   or   J  =  B    

      J  =  B  (Since   M   J). 

Now   b1   B  =  j    

   b1  =  x + m  for some  x    b   and  m    M(by the definition of  J) 

   b1(x + m)  =  b1b1      b1 x  +  b1m  =  b1 

   0  +  b1m  =  b1       (since  b1  x    b1  b  =  0) 

    b1m  =  b1      b1  =  b1m  =  mb1   M   (since  M  is an ideal) 

   b1   M,  a contradiction. 

Therefore either   b    M   or   b1  M . 
 

Part-(iv):  Suppose   b,  b1   M    

   b + b1   M     1  =  b + b1   M    

   1.c    M  for all  c  B  (since  M  is an ideal)     c  M   for all  c    B    

   B  =  M,  a contradiction (to the fact that   M   is a proper filter). 

 
(ii)  (i): We have to show that   M   is a maximal ideal. 

Let   I    be an ideal of   B   such that   M  I  B.  Suppose that   I    B.   

Now we have to show that   M  =  I.  In a contrary way,  suppose that   M  I.  Then   

there exists  x    I   and   x   M 

    x    I   and   x1   M   (since x    M  or  x1   M)  

    x,  x1   I     (since   M  I)      1  =  x  +  x1   I 

    I  =  B,  a contradiction.  Hence either  M  =  I   or   I  =  B.   

The proof is complete. 
 
 
 
 





 



  






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16.3  FILTERS:  
 
16.3.1 Definition: Let  B  be a Boolean algebra and  .  Then F is said to be a filter 
(or dual ideal) if it satisfies the following two conditions: 
       (i)  x, y    F        xy    F., and  (ii)  a    F,  b    B      a + b    F. 
 
16.3.2 Examples: (i) Let  B  be a Boolean algebra.  The two subsets  {1}  and  B  are filters.  
These two filters are called trivial filters.  The other filters,  exist if any,  are called as proper 
filters.  
 
    (ii) Let  X  be an infinite set.  We know that     is a Boolean algebra.   Write               

F  =  {A / A    X,  and   X \ A  is finite}.   Now we show that   F   is a filter. 

Let  A,  B    F;  and  C    B.A    F,  and  C    B     

     X \ A  is a finite set,  and  C    B.        X \ (A  C)    X \ A   is a finite set 

     A  C    F          A + C    F. 

Let   A,  B    F      X \ A   and   X \ B   are finite 

     X \ (A  B)  =  (X \ A)  (X \ B)  is finite.       A  B    F. 

This shows that  F  is a filter. 

 
   (iii) Let  Y  be a non-empty set,  and   B  =  .   

We know that  B  is a Boolean algebra. 

Let  A    Y.  Write F  =  {C  /   A   C  Y}.  Now we verify that  F  is a filter in  B. 

Let  U,  V    F   and   Z    B     

    A  U  Y   and   A  V  Y 

    A    (U + Z)    Y   and   A    (U  V)   Y       (U + Z),  U.V     F. 

This shows that  F  is a filter. 
 
16.3.3.  Theorem: Let  B  be a Boolean algebra and I ⊊ B. 
The following two conditions are equivalent: 
 
     (i) I  is an ideal;  and  (ii)   F  =  {x1 /  x    I}  is a filter.  
 
Proof:  (i)  (ii): Let   a,  b    F   and   c    B    

   a1,  b1   I    and   c1   B      a1 +  b1   I   and  a1c1   I 

    (a1 + b1)1   F   and   (a1c1)1   F       a11.b11   F   and   a11 + c11   F 

    a.b    F   and   a + c    F.  Therefore  F  is a filer. 

(ii)  (i): Let   x,  y    I  and  c    B. 

    x1, y1   F    and   c1  B      x1.y1   F   and   x1 + c1   F 

BF

)X(



 



  

)Y(

  

   

 


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    (x1.y1)1   I   and    (x1 + c1)1   I       x11 + y11   I   and    x11 c11   I 

    x + y    I   and   xc    I.   Therefore   I   is an ideal. 

 
16.3.4   Theorem: Let  B  be a Boolean algebra and   F  B.  Then the following three 
conditions are equivalent: 
 
   (i)  F is a filter in  B. 
 
  (ii) There is a Boolean algebra   B1  and a Boolean homomorphism  f : B  B1  such that   F  

=  {b  B / f(b) = 1} 

  (iii)  a, b  F,  x    B, and  a    x      ab    F  and x    F. 

 
Proof:   (i)  (ii):    Let  F  be a filter in  B.  Then by the Theorem 16.3.3,  the set   

              I   =  {a1 /  a  F}  is an ideal of  B.   

Hence by the Theorem 16.2.7,  there exists a Boolean algebra  B1  and a Boolean 

homomorphism   f : B  B1  such that  I  =  Ker f.   Now let   b    B.   

Then  b    F        b1   I   =   Ker f      f(b1)  =  0     (f(b))1  =  0     f(b)  =  1. 

This shows that   F  =  {b  B   f(b) = 1} 

 
(ii)  (iii): Suppose there is a Boolean homomorphism  f  of  B  into another Boolean algebra  

B1  such thatF  =  {b  B   f(b) = 1}.  Let  a,  b    F.   

Then  f(a)  =  1  =  f(b) 

   f(a  b)  =  f(a)   f(b)  =  1  1  =  1      a  b    F. 

Suppose  a    F,  x    B   and   a    x. 

   f(a)  =  1,  x   B,   x  =  a  x 

   f(x)  =  f(a  x)  =   f(a)  f(x)  =  1   f(x)  =  1     x    F.  Hence we have  (iii). 

 
(iii)  (i): Suppose the condition  (iii).  Let   a,  b    F   and  x    B    

   ab    F   (by  (iii)),   a + x    F,  and a    a  x  =  a  +  x 

   ab    F,  and   a + x    F   (by (iii)).  The poof is complete.  

 
16.3.5 Note:   Let  B  be a Boolean algebra.  
(i) Let  I  be a proper ideal of  B  and write   
ξ = {J   J is an ideal of  B  such that I  J  B}. 
By Zorn's Lemma,  ξ  contains a maximal element and this maximal element is a maximal 
ideal. 
 




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   (ii) Let   F   be a proper filter of  B  and write   

Ω  =  { J   J is a filter of  B  such that   F  J  B}. 

By Zorn's Lemma,  Ω   contains a maximal element  M.   

This M satisfies the following property:  

K  be a filer,  M  K  B    M = K  or K = B. 

 
16.3.6 .  Definition: Let    F   be a proper filter in a Boolean algebra  B. We say that  F  is a 
maximal filter (or ultra filter) if it  satisfies the following condition:  
K  is a filter,  F   K    B      F  =  K   or   K  =  B. 
   
16.3.7.  Theorem: Let  M  be a Filter of a Boolean algebra   B,  then the following two 
conditions are equivalent: 
 
   (i)   M  is a maximal (ultra) filter. 
 
  (ii)   b  B        b  M  or  b1   M,  but not both. 
 
Proof:  (Similar to the proof of  Theorem16.2.12.) 
 
16.3.8.  Problem: Let  X  be a set and write  B  =  . 

We know that  B  =    is a Boolean algebra.  Let  x    X.  Then 
 
   (i)  Fx  =  {A   x    A}  is a filter in  . 
 
 (ii)  Fx  is an ultra filter. 
 
Solution: (i)   Let   U,  V    Fx,  and  C    B  .    x    U,  x   V   and   C    B 

    x  U V  =  U.V   and   x  =  x + 0    U + C 

  U.  V    Fx   and   U + C    Fx.   This shows that   Fx   is a filter. 

 
   (ii)   Let  J  be a filter such that   Fx   J    B.Suppose  Fx  J.   

Then there exists  Y    J  such that   Y  Fx     x    Y    J. 

Now   {x}    Fx   J   and   x  Y    J    

              =  {x}  Y    J    (since  J  is a filter) 

Let   Z    B        Z          Z. 

Now      J   and      Z   and   J   is a filter      Z    J  (by the Theorem 16.3.4).   

Now we proved that   Z    B    Z    J.  So   B    J.   Hence   J  =  B. 

This shows that   Fx   is a maximal (ultra) filter. 

 



 

 

)X(
)X(

)X( )X(



 

 

 


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16.3.9.  Definition: Let  X  be a set and write  B  =  .  We know that  B  is a Boolean 

algebra.   Let  x    X.      We know that  Fx  =  {A   /  x  A}  is an ultra filer. These 

filters  Fx,  x  X   are called fixed ultra filters. 

 
16.4  SOLUTIONS OF BOOLEAN EQUATIONS:  
 
16.4.1  Definition:  Let  p  and  q   be Boolean polynomial in  Pn. 
 
   (i) Then the pair  (p, q)  is called an equation. 
 
  (ii) An element   (a1, a2, …, an)    Bn   is called a solution for the equation  (p, q)  if    

(a1, a2, …, an)  =  (a1, a2, …, an). 

 
   (iii)  If  (a1, a2, …, an)   is a solution for the equations  (pi, qi)   for all   i  I,  then we say 

that  (a1, a2, …, an)  is a common solution  of all equations  (pi, qi).   

In this case,  we also say that   (a1, a2, …, an)  is a solution of the system  {(pi, qi)  i  I}. 
 
16.4.2 Notation: (i) Sometimes we write  p  =  q  instead of  (p, q). 
 
   (ii)  Suppose   p  =  x1

1x2 + x3   and   q  =  x1(x2 + x3). 

If   (x1, x2, x3)  =  (1, 0, 1),  then   p = 1   and   q = 1.   

Therefore  (1, 0, 1)  is a solution for  (p, q). 

In this case,  we say that  (1, 0, 1)  is a solution of the equation   p  =  q. 

 
   (iii) Suppose   p  =  x + x1   and   q = 0.   Then   p  =  q   have no solution. 
 
16.4.3 Theorem: The equations   p = q   and   pq1 + p1q  =  0   have the same solutions for 

any two Boolean polynomials   p  and   q   in   Pn. 

 
Proof:  Let  B  be a Boolean algebra and  (a1, a2, …, an)     Bn

. 

Let   p, q    Pn.  Write  a  =  (a1, a2, …, an)  and   b  =   (a1, a2, …, an). 

Now    (a1, a2, …, an)  is a solution for  p  =  q. 

  (a1, a2, …, an)  =   (a1, a2, …, an)      a  =  b 

    0  =  a   a1 

                =  (a  a)  (a1 a1)   =  (a + a)(a1 + a1)   

                =  (a + b) (a1 + b1)  (since a  =  b) 

                =  aa1 + ab1 + ba1 + bb1   =  0 + ab1 + ba1 + 0 

)X(

)X(

Bp Bq

Bp Bq

Bp Bq
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                =   ab1 + ba1     =  ab1  + a1b 

                =    (a1, …, an)  .  (a1, …, an) +  (a1, …, an)  .  (a1, …, an) 

                =  (  + )(a1, …, an)   =  (a1, a2, …, an) 

   0 (a1, …, an)  =  (a1, a2, …, an)  

   (a1, a2, …, an)  is a solution for the equation   0  =  pq1 + p1q. 

Thus we proved that  (a1, a2, …, an)    Bn  is a solution for    p  =  q    

   (a1, a2, …, an)  is a solution for   pq1 + p1q  =  0.  The proof is complete. 

 
16.4.4 Theorem: Let   B   be a Boolean algebra and(a1, a2, …, an)    Bn.   

Let   pi,  qi   Pn   for  1    i    n.   

Then the following two conditions are equivalent: 

 
   (i) (a1, a2, …, an)  is a solution for the system {( pi, qi)  1    i   m} 

  (ii) (a1, a2, …, an)  is a solution for the equation   

p1q1
1 + p1

1q1 + p2q2
1 + p2

1q2 + … + pmqm
1 + pm

1qm  =  0 
 
Proof: Now  (a1, a2, …, an)  is a solution for the system{( pi, qi)  /  1    i   m} 

    (a1, a2, …, an)   is a solution for   pi  =  qi   for all    1    i    m. 

    (a1, a2, …, an)   is a solution for   pi
1qi + piqi

1  =  0  for all   1    i    m. 

    (a1, a2, …, an)  is a solution for (p1
1q1 + p1q1

1) + … + (pm
1qm + pmqm

1)    

                                             =  0 + 0 +… + 0  =  0. 

The proof is complete. 

 
16.4.5  Note:  How to find a common solution for a given system of equations: 
 
Step-(i): Suppose the given system of equation is  ( pi, qi)  1    i   m} 
 
Step-(ii): Write down the expression  (p1

1q1 + p1q1
1) + … + (pm

1qm + pmqm
1)    

 
Step-(iii): Express polynomial (in step-(ii))  in conjunctive normal  form.   
Suppose the conjunctive normal form is    where   ti   is a  

sum terms.  (Note that each  ti  has the form     with each  ei  =  0  or  1). 
 
Step-(iv):  Note that  (a1, …, an) is a solution for 

 
  it is a solution for at least one  ti.   
Find the solutions for each equation   ti  =  0. 
 

Bp
1

Bq
1

Bp Bq

Bp
1

Bq
1

Bp Bq  B11 qppq 

 B11 qppq 

 it
n21 e

n
e

2
e

1 x...xx

 it
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Step-(v): All the solutions obtained in Step-(iv)  form the set of all solutions of the given 
system of equations. 
 
16.4.6  Problem:  Solve the system of equations (x1x2, x1x3 + x2),   and  (x1 + x2

1, x3)} 
 
Solution:  Step-(i): In our usual notation   p1  =  x1x2,  q1  =  x1x3 + x2, 

p2  =  x1 + x2
1,  q2  =  x3. 

 
Step-(ii): Consider the expression [(x1x2)1(x1x3 + x2) + (x1x2)( x1x3 + x2)1]  

                                         + [(x1 + x2
1)1 (x3) +  (x1 + x2

1)(x3)1]. 

 
Step-(iii): The conjunctive normal form for this expression  (the detailed steps left to the 

reader as exercise) is  (x1 + x2 + x3
1)( x1

1 + x2
1 + x3

1)  =  0. 

 
Step-(iv): Now   t1  =  (x1 + x2 + x3

1)   and   t2  =  ( x1
1 + x2

1 + x3
1).   

Now   (a1, a2, a3)  is a solution for   t1  =  (x1 + x2 + x3
1)  =  0 

   a1 + a2 + a3
1 =  0      a1  =  a2  =  a3

1  =  0    

   a1 = 0,  a2  =  0,  a3  =  1. 

Thus  (0, 0, 1)  is a solution for  t1  =  0. 

Now  (b1, b2, b3)   is a solution for   t2  =  ( x1
1 + x2

1 + x3
1) 

   b1
1 + b2

1 + b3
1      b1

1 =  b2
1 = b3

1  = 0 

   b1  =  b2  =  b3  =  1.    Thus  (1, 1, 1)  is a solution for  t2. 

 
Step-(v):  Conclusion: {(0, 0, 1), (1, ,1 ,1)}  is the set of all solutions of all solutions for the 
given system of equations.   
 
16.4.7 Theorem: Let  E = {pj = 0    j  J}  be a system of equations over a Boolean algebra  

B  with  pj   Pn   for  all  j   J.    

Write  I  =  {b1  + … + bm    bj  B  for  1  j   n} 

 
 (i)   Then  I  is an ideal in  Pn(B). 
 
 (ii) (a1, …, an)  Bn  is a common solution of  {pj = 0  / j  J} 

  (a1, …, an) = 0 for all  i  I. 

 

Proof: (i) Let   x, y    I,   Pn(B). 

    x   =  b1  + … + bm    and   y  =  c1  + … + ck . 

1p mp

i

q

1p mp 1r kr
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   x + y  =  b1  + … + bm  +  c1  + … + ck   I. 

Note that   pj  =  0       pj.q  =  pj  q  =  0  q  =  0      pj.q  =  0. 

Now   x   =  (b1  + … + bm ). =   b1  + … + bm )    I.  

This shows that   I  is an ideal. 
 
(ii) Now  (a1, …, an)  is a common solution of  {pj = 0  / j  J} 

   pj (a1, …, an)  =  0   for all  j  J. 

    bj pj (a1, …, an)  =  0   for all  j  J  and  bj  B 

    (b1p1 + … + bmpm)(a1, …, an)  =  0  for all  j  J  and  bj   B for all  m. 

 (a1, …, an)  =  0   for all  i  I.  The proof is complete. 

 
16.5  SUMMARY:   
 
In this lesson, we have introduced ideals and filters which are important substructures of a 
Boolean algebra.  We have given a method to find a common solution for a given system of 
equations. 
 
16.6  TECHNICAL TERMS:  
 
1.  Ideal:    
 A  non-empty I of a Boolean algebra  B is said to be an ideal of B and if  ib  I   and   i + j  
I for all   i, j   I   and   b  B. 
 
2.  Principal ideal: 
 Let  B   be a Boolean algebra. Suppose b    B.    The set { bc    c  B}  is denoted by  (b).   
It is easy to verify that the set   (b)   is an ideal of  B.  This ideal  (b)  is called a principal 
ideal.   
 
3.   Filter:  
Let B be a Boolean algebra, and .  Then F is said to be a filter (or dual ideal)  of B 

if  (i)  x, y F    xy   F,  and  (ii)  a    F,  b    B      a + b    F. 
 
4.  Kernal of a Boolean homomorphism: 
Let  B1,  B2   be Boolean algebras  and  h : B1 B2  a Boolean homomorphism.  Then the set  
{b  B1   h(b) = 0} is called the kernal of  h, and the set is denoted by  Ker h. 

 
5.  maximal filter (or ultra filter): 
 Let    F   be a proper filter in a Boolean algebra  B. We say that  F  is a maximal filter (or 
ultra filter) if it  satisfies the following condition:  
K  is a filter,  F   K    B      F  =  K   or   K  =  B. 
 
 
 
 

1p mp 1r kr

q 1p mp q qp1 qpm
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16.7  SELF ASSESSMENT QUESTIONS:  
 
1.  If  B  is a Boolean algebra and   I   a non-empty subset of  B, then prove that the following 
conditions are equivalent: 
   (i)   I    B  (That is,  I  is an ideal of B); 
   (ii) If   i, j    I   and   b  B   such that   b     i,  then   i + j  I   and    b  I. 
   (iii) There exists a Boolean algebra  B1  and a Boolean homomorphism   h : B  B1  such 
that   I  =  Ker h.  
Ans: (Theorem: 16.2.7).  
 
2.  If  B  is  a Boolean algebra and I ⊊ B, then prove that the following two conditions 

are equivalent:  (i) I  is an ideal;  and  (ii)   F  =  {x1 /  x    I}  is a filter.  
Ans:  (Theorem 16.3.3.) 
 
3.  Define ideal and filter in a Boolean algebra and give examples each. 
Ans: (Refer: Definition 16.2.2., Example 16.2.4.(ii), Definition 16.3.1., Example 16.3.2.) 
 
4.  Prove that the equations   p = q   and   pq1 + p1q  =  0   have the same solutions for any two 
Boolean polynomials   p  and   q   in   Pn. 
Ans:  (Theorem 16.4.3.) 
 
5.  Solve the system of equations (x1x2, x1x3 + x2),   and  (x1 + x2

1, x3)} 
Ans:  ( Refer the solution of Problem  16.4.6.) 
 
16.8  SUGGESTED READINGS:  
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2.  James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 
1977. 

 
3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
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LESSON 17 

MINIMUM FORMS OF BOOLEAN 
POLYNOMIALS, KARNAUGH DIAGRAMS 

 
 
OBJECTIVES: 
 
 To know more on Boolean polynomials. 
 To find minimal forms of Boolean polynomials.  
 To understand the Quine-McCluskey algorithm to find minimal forms 
 To apply Quine-McCluskey algorithm. 
 To understand the Karnaugh-diagrams. 
 To get ability to represent Boolean polynomials in terms of K-diagrams  

 
STRUCTURE: 
 

17.1  Introduction 
17.2  Minimal forms of Boolean polynomials   
17.3  Quine-McCluskey algorithm. 
17.4  Karnaugh diagrams  
17.5  Minimization of Boolean Expressions using K-maps 
17.6  Summary 
17.7  Technical Terms 
17.8  Self Assessment Questions 
17.9  Suggested Readings 
 
17.1.  INTRODUCTION:  
 

We know that by using the axioms of a Boolean algebra, we can simplify a given 
Boolean polynomial.  The process of simplification is called the optimization or minimization 
of Boolean polynomials. This optimization is useful in future studies such as the 
simplification of switching circuits (we study this concept of switching circuit in the next 
coming lessons). 
 

Boolean algebra is used as a tool for expressing problems of circuit design. In the 
previous lessons, we have seen some of them viz., Hasse diagrams, truth tables and logical 
diagrams. In this lesson, another widely-used way is discussed. This type of representation 
helps us to simplify the functions.  We discussed a new structure, called Karnaugh diagram / 
map.  This is an area which is subdivided into 2n cells, one for each possible input 
combination for a Boolean function of n variables. Half the number of cells is associated with 
an input value of 1 for one of the variables and the other half the number of cells, with the 
input value 0 for the same variable. More precisely, the Karnaugh map corresponding to 
Boolean expressions in n variables is an area which is subdivided into 2n cells (small squares) 
each of which corresponds to one of the fundamental products (or minterms) in n variables. 
 
 
 
 

-
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17.2 MINIMAL FORMS OF BOOLEAN POLYNOMIALS:  
 
17.2.1 Notation: (i)  Any Boolean variable  x  (either complemented or not),   0  and  1  are 
called as literals. 
 
   (ii) The symbol  df  denotes the total number of literals in a sum-of-products representation 
of a Boolean polynomial  f. 
 
   (iii)  The symbol   ef   denotes the number of summands in f.   
 
  (iv)  We say that   f   is simpler than a sum-of-product expression  g  if  ef < eg ,   

or  ef  =  eg   and df  <  dg. 

 
(v)  We say that   f   is minimal if there is no simpler sum-of-product expression which is 
equivalent to   f.  
(In other words,  f  is minimal if it has sum-of-product expression with the smallest possible 
number of literals). 
 
  (vi)  In this section, a Boolean polynomial is also called as expression.  
 
17.2.2 Definition: We say that an expression   p  implies an expression   q   if the condition:   

ℬ(b1, …bn)  =  1     ℬ(b1, …bn)  =  1  is true  for all    b1, …bn ℬ. 

 In this case,  we say that  p  is an implicant of   q. 

 
17.2.3 Note:  (i)  A product expression (or a product ) is an expression in which  +  does not 
occur.  
 
   (ii)  A prime implicant for an expression   p   is a product expression      which implies   
p,  but which does not imply   p   if one or more factors in      are deleted.  
 
  (iii)  If the set of factors of a product term  p  is a subset of the set of factors of a product 
term  q,  then we say that  p is  a subproduct of   q. 
 
17.2.4  Examples: (i)  x1x3   is a subproduct of   x1x2x3. 

 

(ii) x1x3 is  a subproduct of x1x2
1x3. 

 

(iii) Consider the expression  p  = x1x2x3  + x1x2
1x3  + . 

Observe that  (1, i2, 1)  =  1,  and    (1, i2, 1)  =  1. 

For other arguments, the value of   is 0.  The subproducts of x1x3 are x1, and x3. 

Neither   x1   nor   x3   imply   p  (since (1, 1, 0)  =  1,  and    (1, 1, 0)  =  0). 

So   x1x3   is an implicant of   p ,  and no subproduct of   x1x3  is an implicant of   p.    

Therefore   x1x3    is a prime implicant of  p. 
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17.2.5  Theorem: A polynomial   p   Pn   is equivalent to the sum of all its  prime 
implicants. 
 
Proof:  Let  { pa  /  a   A} be the set of all prime implicants of  p,  and  q   be sum of all 

prime implicants    pa   of    p.   

Part-(i): Suppose  (b1, …bn) = 1 for some (b1, …bn) ℬn.   

If   pa(b1, …bn)  =  0  for all prime implicants   pa,  then  the sum (b1, …bn) = 0, a 

contradiction.  Therefore   pa(b1, …bn)  =  1  for some prime implicant   pa.  

Since  pa  is a prime implicant, pa  implies   p,  and so (b1, …bn)  =  1. 

Now we proved that   (b1, …bn) = 1   (b1, …bn)  =  1. 

 

Part-(ii):  Suppose that   (b1, …bn)  =  1.  

We know that   p can be expressed in disjunctive normal form. 

Suppose that  p = s1 + s2 + …     is the disjunctive normal form where each  si  is a product 

term. 

Since  (b1, …bn)  =  1,  there exists   i   such that    si(b1, …bn)  =  1. 

If  si  is a prime implicant, then (since si(b1, …bn)  =  1) the the sum of prime implicants equal 

to  1,  and so  (b1, …bn) = 1. 

Now   si   is a product term of the form  … . 

If   si   is not a prime implicant,  then  there exists  a subterm  t  of   si   which implies  p,  and   

t(b1, …bn)  =  1.   

Note that  we got   t   by removing some terms in   si  =  … . 

If   t  is a prime implicant, then (b1, …bn) = 1. 

If  t  is not a prime implicant, then (after some steps),  we get a subproduct term   r   of  si  

such that  r  implies  p, and  there is no subproduct term of  r  that implies   p.   

Then    r     is an implicant of   p,  and  r(b1, …bn) = 1. 

Since  r  is a prime implicant,  and  r(b1, …bn) = 1, we have that the sum of prime implicants 

is equal to  1.  That is,  (b1, …bn) = 1. 

Now we proved that  (b1, …bn)  = 1   (b1, …bn)  =  1.  

 
Part-(iii):  From Part-(i) and Part-(ii),  we conclude that   

(b1, …bn)  = 1    (b1, …bn)  =  1. 
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Now  we have that  (b1, …bn)  =  0   (b1, …bn)  =  0. 

This shows that   p  is the sum of its prime implicants. 
 
17.2.6 Definition: A sum of prime implicants of   p  is said to be  irredudant if it is equivalent 
to   p,  but does not remain equivalent if any one of its summands is omitted.  
 
17.2.7 Note: (i) A minimal sum-of-product expression is irredundant.   
 
    (ii)   To get a minimal expression for a given polynomial  p,  first we get the set of 
irredundant expressions for  p,  and  then we select that irredundant expression  with the least 
number of literals.  
 
     (iii)  Prime implicants are obtained by starting with the disjunctive normal form   d   for 

the Boolean polynomial   p   and then by applying the rule   yz  +  yz1  ~  y,   (from left to 

right)  wherever necessary.  

In particular, we use    ~   , where  ,  ,   and    are  some product 

expressions.  

The set all sub expressions of the d.n.f. of   p  which cannot be simplified further by this 
procedure, is the set .of prime implicants.   
The sum of these prime implicants obtained is equivalent to   p  (we may say that  the sum of 
these prime implicants is equal to p). 
 
17.2.8 Example:   Let   p  be the Boolean polynomial. 
We use  ,  x,  y,  z   instead of    x1,  x2,  x3,  x4. 
 
Step-(i): Suppose the  disjunctive normal form   d   for  p  is given by    

d = xyz1  +  xy1z1  +  x1yz  +  x1yz1  +  1x1yz  +   1x1yz1  +  1x1y1z.  

 
Step-(ii): Observe the following: 

xyz1 + xy1z1   =  xz1, 

x1yz  +x1yz1   =  x1y , 

xyz1  + x1yz1  =  yz1 , 

1x1yz +1x1yz1  =  1x1y , 

1x1yz+ 1x1y1z  =  1x1z , 

x1yz  +  1x1yz   =  x1yz , 

x1yz1 + 1x1yz1  =  x1yz1 . 

Now we use the above mentioned equations in the process of minimizing the polynomial 
expression.  In general,  this procedure is repeated again and again. 
Whenever a product term is used (in this process), we place a tick mark.   
At any step, the product terms that cannot be ticked, are prime implicants.   
 

q p

 1    



     
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Step-(iii):  In this example,  the second round of simplifications yields: 

x1y +1x1y =  x1y , 

  x1yz  + x1yz1  =  x1y . 

 

These four expressions  x1y, 1x1y, x1yz,  and  x1yz1  are ticked.   

Finally we get that 

p   ~  xz1  +  yz1  +  x1z  +  x1y,   which is a sum of prime implicants of   p. 
 

McCluskey improved this method, and the improved method is called as   
Quine-McCluskey algorithm. 
 
17.3  QUINE-MCCLUSKEY ALGORITHM:  
 
17.3.1 Algorithm:  
 
Step-1:  Consider  the d.n.f. of the given Boolean polynomial. 
We represent all the product terms of the d.n.f. in terms of zero-one-sequences (In other 
words, the product terms are represented by binary n-tuples).   
In particular,  x1

1 and  x1  are denoted by  0  and  1,  respectively.  

(For example,  the product term 1x1y1z   is denoted by  0001). 

Missing variables are indicated by a dash.   

(For example, the product term 1x1z   is denoted by  00-1). 

 

Step-2: The product expressions, regarded as binary n-tuples,  are partitioned into classes 
according to the numbers of ones in the expression.  So we write the n-tuples according to 
increasing numbers of ones.  In our example,  the order is given below: 
 
 
 
 
 
 
 
 
 
 
 
Step-3:  If two of these expressions differ in exactly one position, then they are of the form  p  

=  i1i2 …ir … in   and   q  =  i1i2 …  …  ,  where all   ik   are from  {0, 1, -}  and  the  ir   

is in  {0,1}.  

Now  instead of     p + q   we write  i1i2 …ir-1 - ir+1 … in . 

Also  we place a tick mark at both   p   and   q. 
Now we consider our example.  From the Table-1, we get the Table-2.   
In getting table-2, we use all the terms in table-1.    

r
1i ni

 1x1y1z               0   0   0   1 
 1x1yz1               0   0   1   0 
                             _________ 
 1x1yz                  0   0   1   1 
x1yz1                  1    0  1   0 
xy1z1                 1   1   0   0 
                             __________ 
x1yz                    1   0   1   1 
xyz1                    1   1   1   0 

Table-1 
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So all the terms of table-1 are to get a tick mark, and so no one of these product terms is a  
prime implicant. 
 
 
 
 
 
 
 
 
 
 

Step-4:  The unticked terms in  table-2,  are prime implicants.  

At present, from table-2, the prime implicants that are obtatined are  00-1 (1x1z),  1-10 (

yz1),  and  11-0 (xz1). The expressions with ticks are not prime implicants and so we have 

to go for further reduction.   

The further reduction gives us only one term  -01- (x1y). 
Thus we got all the prime implicants, namely 
 
 
 
 
 
 
Note that the sum of all prime implicants of a given polynomial may not be in the minimal 
form.  
 

Step-5: We know that the sum of all prime implicants of   p   is equivalent to   p. 
Observe the Table-4.  This table-4 is called as prime implicants table. 
The binary n-tuples related to the product terms of the d.n.f. are used for column headings.   
The prime implicants are used for row headdings. 
A product term  u  is said to cover another product term  v if  u   is a subproduct of  v.  
A cross mark (that is,   )   is placed at the junction of the  ith   row and  jth  column if the 
prime implicant in the ith row  covers the product term of the  jth  column.  
Now we select  a minimal subset S of the set of prime implicants  so that each product term 
of the d.n.f. is covered by at least one of the prime implicant in  S. 
A prime implicant is called a main term(or essential) if it covers a product expression (of the 
d.n.f.) which is not covered by any other prime implicant. 
The sum of the main terms is called the core. 
[Consider the example and observe table-4. 
 
 
 
 
 
 
 
00-1 covers  0001, and the product term 0001 is not covered by any of the prime implicant. 
So the prime implicant  00-1 is main term (or essential). 



0 0 - 1  1x1z 
1 - 1 0 yz1

 

1 1 - 0 xz1 
- 0 1 -  x1y 

 

0 0 - 1 
0 0 1 - 
- 0 1 0 
    
- 0 1 1  
1 0 1 - 
1 - 1 0 
1 1 - 0 

 

 

 
 

 

 Table - 2 

Table-3 

 0001 0010 0011 1010 1100 1011 1110 

00 - 1          

1 - 10          

11 - 0          

- 01 -            

 

Table-4:  Prime implicants table 
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Note that  00-1, 11-0, -01-  are main terms. 
 
So the core =  (00-1) + (11-0) + (-01-) 

                  =  1x1z  +  xz1  + x1y.] 

 
Step-6: If the set of all prime implicants in the core cover all the product terms in the   d.n.f.,  
then the core is the  (unique)  minimal form of   d.   
If the set of all prime implicants in the core do not cover all the product terms in the d.n.f., 
then we go further. 
[Consider our example.  From the above step-5, we know that  the 

       core =  1x1z  +  xz1  + x1y. 

In this example,  the set of all prime implicants in the core cover all the product terms in the 

d.n.f.  Hence the minimal expression is  1x1z  +  xz1  + x1y.] 

 
Step-7:  Suppose the product terms of  d.n.f.  which are not covered by the prime implicants 
of the core are q1, …, qk, and the prime implicants not in the core are   p1, …, pm.  We  form 
the next table (similar to prime implicants table) with  qj  as the column headings, and   pi  as 
row headings. 
The mark      is placed in the entry  (i, j) (that is, at the junction of the ith row and jth 
column) to indicate the fact that   pi   covers   qj .  We then find a minimal sub-collection of   
p1 , …, pm   which covers all of   q1, …, qk and add them to the core.   
 
17.3.2 Problem:  Determine the minimal form of p,  which is given in its disjunctive normal 
form 
 
p  =  v1w1x1y1z1  +  v1w1x1yz1  +  v1w1xy1z1 + v1w1xyz1 

              +  v1wx1y1z  +  v1wx1yz1  + v1wxy1z  + v1wxyz1 

             +  v1wxyz     + vw1x1y1z1  + vw1x1y1z  + vw1xy1z   

             + vwx1yz1  + vwxy1z1  + vwxyz1  + vwxyz 

 
Solution:  We follow the Quine-McClusky algorithm. We are not going for detailed steps, as 
the steps in detailed presented in the algorithm.  We can write  p  in the binary form, as 
follows: 
 
p  =   00000  +  00010  +  00100 + 00110  

              +  01001 + 01010 + 01101  + 01110 

             + 01111 + 10000 + 10001  + 10101 

             + 11010 + 11100  + 11110 + 11111. 

 
First we write these binary 5-tuples in the order and then we form the Table-1. 
We got the Table-2 from Table-1. All the product terms in Table-1 are ticked.   
So we do not get a prime implicant from Table-1.  Now observe  Table-2. 
We got Table-3  from Table-2.  All the product terms in Table-2 are not ticked. 


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The terms which are not ticked are denoted by  J, I, H, G, F, E. 
For example,   J  represents the prime implicant  "-0000". 
 
 
                                                                       Row numbers 
 

0  ones 0 0 0 0 0   (1) 

 
 
1 one 

0 0 0 1 0   (2) 
0 0 1 0 0   (3) 
1 0 0 0 0   (4) 

 
 
2 ones 

0 0 1 1 0   (5) 

0 1 0 0 1   (6) 

0 1 0 1 0   (7) 

1 0 0 0 1   (8) 

 
 
3 ones 

0 1 1 0 1   (9) 

0 1 1 1 0   (10) 
1 0 1 0 1   (11) 

1 1 0 1 0   (12) 

1 1 1 0 0   (13) 
 
4 ones 

0 1 1 1 1   (14) 

1 1 1 1 0   (15) 

5 ones 1 1 1 1 1   (16) 

 
Observe  the Table-3. 
No two terms in table-3 can be used to get a term to the next table.  So each term of table-3 is 
a prime implicant.  The prime implicants obtained from table-3 are denoted by  D, C, B, A.   
Final list of prime implicantsis  A, B, C, D, E, F, G, H, I, J. 
 
 
 

(1)(2) 
 

 0 0 0 - 0   

(1)(3)  0 0 - 0 0   

(1)(4)  - 0 0 0 0 J 

(2)(5)  0 0 - 1 0   

(2)(7)  0 - 0 1 0   

(3)(5)  0 0 1 - 0   

(4)(8)  1 0 0 0 - I 

(5)(10)  0 - 1 1 0   

(6)(9)  0 1 - 0 1 H 

(7)(10)  0 1 - 1 0   

(7)(12)  - 1 0 1 0   

(8)(11)  1 0 - 0 1 G 

Table-1 

Table - 2 
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(9)(14)  0 1 1 - 1 F 

(10)(14)  0 1 1 1 -   

(10)(15)  - 1 1 1 0   

(12)(15)  1 1 - 1 0   

(13)(15)  1 1 1 - 0 E 

(14)(16)  - 1 1 1 1   

(15)(16)  1 1 1 1 -   

 
 
 
 

(1)(2), (3)(5) 0 0 - - 0 D 

(2)(5), (7)(10) 0 - - 1 0 C 

(7)(10), (12)(15) - 1 - 1 0 B 

(10)(15), (14)(16) - 1 1 1 - A 

 
Step-4:  In the prime implicants table (that is, in Table-4), for convenience, we give the 
product terms of d.n.f. in + binary  5-tuples in column form. 
 

 (1
) 

(2) (3) (4) (5) (6) (7) (8) (9) 

0 0 0 1 0 0 0 1 0 
0 0 0 0 0 1 1 0 1 
0 0 1 0 1 0 0 0 1 
0 1 0 0 1 0 1 0 0 
0 0 0 0 0 1 0 1 1 

- 1 1 1 - A          
- 1 - 1 0 B           
0 - - 1 0 C             
0 0 - - 0 D              
1 1 1 – 0 E          

0 1 1 – 1 F           
1 0 - 0 1 G           

0 1 - 0 1 H            
1 0 0 0 - I            
- 0 0 0 0 J            

 
 
 

(10) (11) (12) (13) (14) (15) (16) 
0 1 1 1 0 1 1 
1 0 1 1 1 1 1 
1 1 0 1 1 1 1 
1 0 1 0 1 1 1 

Table - 3 

Table - 4 
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0 1 0 0 1 0 1 
           
          
        
       
         

        
        

       
       
       

 
 
Observe the prime implicants table.  The product terms D, H, G, B, E, and A are the main 
terms. So we have that  
Core  =  the sum of the main terms   = D  +  H  +  G  +  B  +  E  +  A   
The product term of column (4) is the only product term that is not covered by the main terms 
in the core.  This term 10000   is denoted by   q1.   
The prime implicants  C,  F,  I,  and  J  are not in the core.  Now we form Table-5. 
 
 

  (4) 

0 - - 1 0 C  

0 1 1 - 1 F  

1 0 0 0 -  I   

- 0 0 0 0 J   

 
This means that the minimal form is   
 
   (i)  D  +  H  +  G  +  B  +  E  +  A  +  J  (if we use   I);   
   (ii)  D  +  H  +  G  +  B  +  E  +  A  +  J   (if we use  J). 
 
Note that the minimal form is not unique.   
In our usual notation,  the minimal form of   p (given in (i))  is given by  

P = v1w1z1  +  v1wy1z  +  vw1y1z  + wyz1  +  vwxz1  +  wxy  + vw1x1y1. 

 
17.4.  KARNAUGH DIAGRAMS:  
 
Now we study a method of representing a given Boolean polynomials (in n variables) in the 
form of a diagram called as Karnaugh diagrams (that contains 2n cells where n is the number 
of variables).   
 
17.4.1 Example:  Consider the Boolean polynomial   p  =  x1x2.  The following (Table-1) is 
the truth table for  p.   As there are only two variable x1 and x2 there exists four possibilities  
for x1x2 :    00, 01, 10, 11.  Observe the following table-1. 

Table - 5 
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Row b1 b2 Minterm 
2121 bb)b,b(p   

(1) 1 1 x1x2 1 
(2) 1 0 x1x1

2 0 
(3) 0 1 x1

1x2 0 
(4) 0 0 x1

1x1
2 0 

 

In the fourth column, there is only one  1   and this  1  is related to (b1 , b2) = (1, 1).   
This  1  is  related to the unique minterm x1x2.  The other values of  p  are equal to 0. 
For two input variables   b1 , b2,  the Karnaugh diagram (table-2)  has  b1 and   b1

1 as column 
headings and    b2   and   b1

2  as  row headings.  
 

 
 

b1 b1
1 

 (1) (3) 

 

 

(2) (4) 

 

Each box at the junction of a row and a column represents a minterm. A shaded box 
represents the value 1,  and  an unshaded box represents the value  0.      

For the given function  p  = x1x2, (refer table-3) the shaded box represents the value   1.  The 
other boxes which do not have shade represents the value  0. 
  

 b1 b1
1
 

b2   

b2
1
   

 
17.4.2 Example:  Karnaugh diagram for three input variables   b1 ,  b2 ,  b3  will be in form 
given in table-4. 
 

 b1 b1
1  

   b3
1
 

b2    
   b3 

b2
1   b3

1
 

 
17.4.3 Example:  Karnaugh diagram for four input variables is of the form (called the 
standard square (SQ)) given in table-5. 
 
 
 
 
 
 
 

b3 

b4 

b4
1
 

b1
1
 

b2 

b3
1
 

b4
1
 

b2
1
 

b3
1
 

b1 

b2 

b2
1 

Table - 2 

Table - 3 

Table - 1 

Table - 4 

Table - 5 
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17.4.4 Example: Now we present the Karnaugh diagrams of some polynomials in two 
variables:   x1  and   x2 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17.4.5 Example:  The standard square (that is, the Karnaugh diagram for four variables) 
enables us to construct Karnaugh diagrams for five or more input variables.  This was 
illustrated by the following tables. 
 
   (i)  We follow the diagram in Table-7 to represent a Boolean polynomial with five 
variables. 
 
 
 
 
 
 
(ii)   We follow the diagram in Table-8 to represent a  
Boolean polynomial with six variables. 
 
 
 
 
 
 
 
17.4.6 Note: We use the Karnaugh diagrams to simplify the Boolean polynomials.  
Consider the collection of the box portions with shade.  We try to collect as many shaded box 
portions of the diagram as possible to form a bigger block.  This big box represents a  
"simple" polynomial.  (We may use a part of the diagram more than once, because the 
polynomials corresponding to blocks are connected by   +). 
 
17.4.7 Problem : Simplify the polynomial p  =  (x1 + x2)(x1 + x3) + x1x2x3   by using its  
Karnaugh diagram. 
 
Solution: The given polynomial is    p  =  (x1 + x2)(x1 + x3) + x1x2x3 . 
The Karnaugh diagram for this polynomial is given in table-9. 
 

 
b5 b1

5 

SQ SQ 

 

  
  

 

x1
1 + x2

1  : 

  
  

 

x1x2  +  x1
1x2

1 : 

  
  

 

x1
1x2

1 : 

  
  

 

x1
1x2 + x1x2

1 : 

Table - 6 

Table - 7 

 b5 b5
1
 

b6 SQ SQ 

b6
1
 SQ SQ 

 

Table - 8 



Advanced Discrete Mathematics                           17.13            Minimum forms of Boolean…    
 

Observe table-9.   Here the boxes  1,3,4,5,7 are the shaded boxes.   
These shaded boxes represent 1 (the value of the function). 
 
 

 b1 b1
1  

 1 2 b3
1
 

b2 3 4  
 5 6 b3 

b2
1 7 8 b3

1
 

 
 
The shaded boxes (1),  (3),  (5),  (7) forms a big shaded rectangular region.   
It is clear that this rectangular region represents  the variable  x1. Therefore   this  x1  is a  
prime implicant.  Now consider the shaded rectangular region formed by the shaded boxes 
(3),  (4) .  This shaded rectangular region represents  the term  x2x3 .  This is also a prime 
implicants.  We can understand from table-9 there are only two prime implicants for the 
given polynomials.  We know that every polynomial is equal (in other words, equivalent) to 
sum of its prime implicants.  Thus we conclude that   p ~ x1 + x2x3 . 
 
17.5.  MINIMIZATION OF BOOLEAN EXPRESSIONS USING K-Maps: 
 
The process of minimization of circuits is important in circuit design. The aim of 
minimization is to reduce the number of gates to a minimum. Minimization of an expression 
is the selection of the simplest representative expression of an equivalence class to serve as 
our circuit.   K-maps are used in the minimization process for functions of six or fewer 
variables.   
 
Two minterms or fundamental products (cells in a K-map) are said to be adjacent if they have 
the same variables and if they differ in exactly one literal which must be a complemented 
variable in one product and uncomplemented in the other.  
For example, 
 
1.   xyz1  and  xy1z1  are adjacent (here, note that in the terms  xyz1  and  xy1z1 ,  the 
difference is: one term contains y and other term contains y1, the difference is in only one 
variable, the other parts are same). 
 
2.   x1yzw and  x1yz1w  are adjacent   (here, note that in the terms x1yzw and  x1yz1w ,  the 
difference is: one term contains z and other term contains z1, the difference is in only one 
variable, the other parts are same). 
 
3.   x1yzw  and  xyz1w  are not adjacent as they differ in two literals  (here, note that in the 
terms x1yzw  and  xyz1w ,  the difference is in two variables. The difference is: one term 
contains x1, z  and  other term contains x, z1.  Hence the given terms are not adjacent). 
 
17.5.1 Theorem:  Sum of two adjacent products P1 and P2 is a fundamental product with one 
less literal. 
Proof:  Two adjacent products P1 and P2 are represented as  

P1 =  a1a2 … ar-1arar+1 … ak 

Table - 9 
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 and   P2 =  a1a2 … ar-1
1
ra ar+1 … ak 

Then P1 P2 = a1a2 … an-1arar+1 … ak( 1
r ra a ) = a1a2 … ar-1ar+1 … ak 

 

17.5.2 Example:  For three variables,  xyz1   xy1z1  =  xz1 (y  y1) = zz1.   
 

The above result and the absorption operation  xyz + xyz1 = xy  help us in grouping the 
terms.   Minimization involves grouping of adjacent cells with l’s in them into a largest 
possible block of such cells.  Simplified expression must contain minimum number of such 
blocks. 
 
17.5.3  Note: In case of two variables, a block will be either a pair of adjacent squares or an 
individual square. 
 
17.5.4 Example:  Minimize the expression  f  =  xy  xy1  x1y1 
Solution: The K-map for the given expression is shown in the following Figure. 

 
Therefore, f contains two blocks corresponding to x and other to y1.   
Hence f = x  y1. 
 
17.5.5 Note: In the case of 3 variables, a basic rectangle contains either a square, or two 
adjacent squares, or four squares which form a one-by-four or a two-by- two rectangle.  
A maximal basic rectangle is a block. 
 
17.5.6 Example: Minimize the following expressions: 

(a)   f1  =  xyz  xyz1  x1yz1  x1y1z   

(b)   f2 = xyz  xyz1  xy1z  x1yz  x1y1z   

Solution K-maps for the given expressions are given in Figures.  
 

 
Their minimized expressions are   

(a).   x1y1z    yz1  xy,     (b).  z  xy.  
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17.6  SUMMARY:   
 
In this lesson, we have learnt simplification (or minimization) of Boolean expressions. This 
optimization is useful in the simplification of switching circuits which will be studied in the 
next coming lessons.  More importantly, we have discussed Quine-McCluskey Algorithm for 
minimization of Boolean expressions.  
 
In the later parts of this lesson,  we discussed the process of reducing the number of terms in 
a Boolean expression Karnaugh diagram / map. The method described was introduced by 
Maurice Karnaugh in 1953. This method is usually applied only when the function involve 
six variables or less. It has enormous applications in electronics and communications 
engineering and information technology.  
 
 17.7  TECHNICAL TERMS: 
  
1.   Implicant 

We say that an expression   p  implies an expression   q   if the condition:   ℬ(b1, …bn)  =  1   

  ℬ(b1, …bn)  =  1  is true  for all    b1, …bn ℬ.  In this case,  we say that  p  is an 
implicant of   q. 
 
2. Prime implicant 
A prime implicant for an expression   p   is a product expression      which implies   p,  but 
which does not imply   p   if one or more factors in      are deleted.  
 
3.  Quine-McCluskey Algorithm (Algorithm 17.3.1.) 
 
4.   Standard square (SQ)) in terms of Karnaugh diagram for four input variables.    
Karnaugh diagram for four input variables is given in Table-5 here (it is called as the  
standard square (SQ)). 
 
 
 
 
 
 
 
 
 
 
 

5.  Karnaugh map:   
Corresponding to Boolean expressions in n variables, we use a square to represent the 
Boolean expression.  The area of the square is subdivided into 2n cells (small squares) each of 
which corresponds to one of the fundamental products or minterms in n variables.  Such 
diagrams used are called as  Karnaugh diagrams / maps. 
 
6. Adjacent:  
Two minterms or fundamental products (cells in a K-map) are said to be adjacent if they have 
the same variables and if they differ in exactly one literal which must be a complemented 
variable in one product and uncomplemented in the other.  

p

q




b3 

b4 

b4
1
 

b1
1
 

b2 

b3
1
 

b4
1
 

b2
1
 

b3
1
 

b1 

Table - 5 
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17.8  SELF ASSESSMENT QUESTIONS: 
 
1.   Prove that a polynomial   p   Pn   is equivalent to the sum of all its  prime implicants. 
Ans: (Theorem 17.2.5.) 
 
2.   Determine the minimal form of p,  which is given in its disjunctive normal form 
p  =  v1w1x1y1z1  +  v1w1x1yz1  +  v1w1xy1z1 + v1w1xyz1 
              +  v1wx1y1z  +  v1wx1yz1  + v1wxy1z  + v1wxyz1 
             +  v1wxyz     + vw1x1y1z1  + vw1x1y1z  + vw1xy1z   
             + vwx1yz1  + vwxy1z1  + vwxyz1  + vwxyz 
Ans: (Problem 17.3.2.) 
 
3.   Find all prime implicants of   xy1z + x1yz1+xyz1+xyz    and form the corresponding prime 
implicants table.  
Ans: (Use the procedure given in 17.3.1.(refer steps 1 to 4)). 
 
4.   Simplify the polynomial p  =  (x1 + x2)(x1 + x3) + x1x2x3   by using its  Karnaugh diagram.  
Ans: (refer: Problem : 17.4.7.). 
 
5.  What do you mean by Karnaugh diagram/map. Give an example. 
Ans: (Refer: matter before Example 17.4.1, and this example also). 
 
6.   Find the K-map for the following expressions: 
(a) (x * y)  (x1 * y1)  
(b) (x1 * y1 * z    x1 * y * z1 x * y * z1) 
(c) (x1 * y1 * z * w)   (x1 * y * z * w1)  (x * y1 * z * w)  (x * y * z * w1) 
 
Ans: K- maps for the above expressions are in the following figures. 

 
7.   For the Boolean expression represented by the following truth table, give K-map 
representation.  Also write the expression. 
 

x y z f(x, y, z) 

0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 
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Ans: The Boolean expression represented by the given table is x1y1z1   x1y1z  xy1z1   
xyz1.   The following figure represents the K-map for the expression 
 x1y1z1   x1y1z  xy1z1   xyz1.   

 
 
8. Minimize the expression: w1  y * (x1  z1) and provide K-map. 
Ans: Minimized expression is :  w1   yz1   wx1y  . 
 

The K-map is shown in the Figure.  
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 Prof.  Dr. Harikrishnan Panackal 
 



 
 

LESSON 18 

SWITCHING CIRCUITS AND GATING 
NETWORKS  

 
OBJECTIVE: 
 
 To know Switching circuits.  
 To use the concepts of Boolean expressions. 
 To understand the Gating networks. 
 To identify different types of Gates. 
 To have proper understanding of Swiching circuits and Gating networks. 
 To develop skills in finding Gating networks for the given expressions. 

 
STRUCTURE: 

 18.1  Introduction 
 18.2  Preliminary notations  
18.3.  Switching circuits  
18.4   Gating Networks.  
18.5   Summary 
18.6   Technical Terms 
18.7   Self Assessment Questions 
18.8   Suggested Readings 
 
18.1.  INTRODUCTION:  

 
The most important application of Boolean algebra lies in the realm of electrical engineering.  
The devices such as mechanical switches,  diodes,  magnetic dipoles, and transistors are two 
state devices.  The two states may be realized as current or no current, magnetized or not 
magnetized, high potential or low potential, and closed or open.  Boolean algebra can be 
applied to any two state device.  In this lesson, we study the switching circuits and gating 
networks. 
 

18.2 PRELIMINARY NOTATIONS:  

 

18.2.1 Note: Observe the  Figures-1, 2, and 3.   

 

(i) In these figures,  the symbols  x and y  are electromagnets.  These x and y  

determine whether the corresponding switch is open or closed. 

 

 

  

 

T1 T2 

x  y 

x y 

Figure-1 

-
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   (ii) In the figures-1 and 2,  the switches are normally held open by a spring.   

When the current flows through the electromagnet,  the switch is pulled closed. 
 

     (iii) In figure-3,  the switch is normally closed by a spring and when current flows through 

the electromagnet  x,  the switch is forced open. 

 

  

 

 

 

 

    (iv)  The flow of current through the main circuits (that is, the circuit connecting  T1  and  

T2) depends on whether the electromagnets   x   and   y   are “on” or “off”. 
 

   (v) "On" is denoted by   “1”   and  "off"  by “0”. 

  

 

 

 

 

Current flow through the main circuit is denoted by   1   while no current is denote by  0. 
 

   (vi)   Now the dependency was shows in the table-1. 

 

18.2.2  Note:  (i)  If two terminal switching circuits   f1  and   f2  depend on the switches   x1, 

x2, …, xn,  then   f1 f2   will denote the switching circuit determined by   f1  and  f2  in 

parallel (see the Figure-4). 

 

T1 T2 

x 

y 

x  y 

Figure-2 

T1 T2 

x  

Figure-3 

Table-1 

x y x  y x  y x  
0 0 0 0 1 
0 1 0 1 1 
1 0 0 1 0 
1 1 1 1 0 
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 (ii) f1 f2   will denote the switching circuit  

determined by  f1  and  f2  in series (see the Figure-5). 

 

 

 

 

 

 

    (iii) 1f  the inverse (or the complement) of  f1  will denote the switching circuit (as in the 

Figure-3) that takes the value  1  when   f1   takes value  0;   and takes the value  0  when   f1   

takes the value 1. 
 

18.2.3 Problem:  Draw switching circuits which represent the following Boolean 

expressions:   (i) x1 (x2 x3), and  (ii) (x1 x2)  (x1 x3).  

Solution: (i)  Figure-6  represents the Boolean expression  x1 (x2 x3). 

 

 

 

(ii)  Figure-7 represents the Boolean expression  (x1 x2)  (x1 x3). 

 

 

 

 

 

 

 

 

T2 T1 

f1 f2 f1 

f2 

Figure-4 

f1 f2 
T2 T1 

f1 f2 

Figure-5 

T2 T1 
x2 

x1 

x3 

Figure-6 

T2 

T1 

x2 

x1 

x3 

Figure-7 
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18.3. SWITCHING CIRCUITS: 
 

The main object of the algebra of switching circuits is to describe electrical or electronic 

switching circuits. 
 

18.3.1 Note: (i)   We also use the symbols given in Figure-8, for the switches. 

 

 

 

 

 

 (ii)  The symbol                               is for the complement  of the  switch  

 

In other words,  S1   and   S1
1  constitute  two switches which are linked,  in two separate 

places in a circuit  so that   S1  is open      S1
1  is closed. 

 

18.3.2 Definitions:  (i). Each symbol   x1 , …, xn is called a switch. 
 

   (ii). Every    p   Pn    is called a switching circuit.   
 

  (iii).   x1
i is called the complementation switch of   xi. 

 

  (iv).   xixj  is called the series connection of   xi   and   xj. 
 

  (v).    xi  + xj    is called the parallel connection  of    xi   and   xj. 
 

  (vi).  For   p   Pn   the corresponding polynomial function   p Pn(B)    is called the 

switching function of   p. 
  

   (vii). P (a1 , …, an)  is called the value of the switching circuit  p  at   (a1 , …, an)  Bn.   

Here the elements   ai   of   B  are called input variables. 

 

18.3.3  Note: It is possible to model electrical circuits by using  Boolean polynomials. 
 

  (i) Consider the Figure-9.  This switching circuit represents  

the Boolean polynomial   p  =  x1 (x2(x3 + x4) + x3(x5 + x6)). 

 

 

S1 S2 , ….. 

Figure-8 

S1 S1
1 
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  (ii) Consider the Figure-10.  This switching circuit represents the Boolean polynomial  

q  =  x1(x2
1 (x6 + x3 (x4 + x5

1)) + x7(x3 + x6)x8
1). 

 

 

 

 

 

 

 

18.3.4  Note:  Consider the figures-6  and  7 (given in the solution of the 

 Problem 18.2.3).   

Figure-6 represents the polynomial   p  =   x1  (x2  x3).   

Figure-7  represents the polynomial  q  =  (x1  x2)  (x1  x3).  

It is clear that  p ~ q .  That is one of the polynomials  p  or  q  can be obtained from the other  
by using the laws of Boolean algebra.   
So there exist two different electric circuits   p  and  q  which operate "identically" if  their 
values are equal for all possible combinations of the input variables   a1, a2, …, an. 
This means,  there exists two distinct electric circuits whose corresponding polynomials are  

p  and  q  (p  and  q  are different polynomials) such that   p B  =  q B.  (that is,  p ~ q) 
 

18.3.5 Note: Algorithm to find a simplified electrical circuit: 

Suppose an electrical circuit (say,  circuit-1) is given.   
 

Step-(i): Find the polynomial  p  which represents the electrical circuit-1.   
 

Step-(ii): By using Quine-McCluskeyalgorithm,  simplify the polynomial  p.  Suppose a 

simple form of   p  is  q.   Now  q  got more simple form than  p,  and   p ~ q. 
 

Step-(iii): Write down the electrical circuit (say,  circuit-2) which represents  q.  

In this way we can get a simple electrical circuit (circuit-2) which operates identically to the 

given electrical circuit  (circuit-1). 

6

5

x

x
x3 

x2 

- x1 

4

3

x

x

Figure-9 

1
5

4

x

x

6

3

x

x
x7 

x2
1 

- x1 
6

3

x

x

Figure-10 

x8
1

 
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18.4  GATING NETWORKS:  
 

18.4.1 Note: (i) We may represent the polynomial (or the  

circuit)  x1x2 + x1x3  as follows:              
31

21

xx

xx




 

(ii) The electrical realization for the polynomial x1x2 + x1x3  is given by the following figure.             

 

 
 

18.4.2 Note: In the above Note 18.4.1., we presented a method of representing a given 

polynomial in the form of a switching circuit.  Now we provide a new representation.  

This new representation consist of some boxes, which converts input variables into values. 

  (i) Consider the following diagram-1.  Here a1, …,an are input variables.  The polynomial   p  

 Pn  converts the given set of inputs into the value  p (a1 , …, an).   

 

 

 

 

 

  

(ii).   For example,  consider the polynomial  p  =  a1a2 + a1a3.  Here  a1,  a2,  a3   are input  

variables.   

 

 

 

 

polynomial  p  converts the variables into the value  p (a1 ,a2, a3)  =  (0  or  1). 

 

18.4.3 Note:  (i).  Some switches or switching circuits may be represented by some new type 

of diagrams which are called as gates.  

By using these gates,  we can represent any switching circuit as a combination of the gates. 

This is a symbolic representation.  
 

(ii).   From  (i),   we can conclude that a gate  (or a combination of gates)  is a  

polynomial   p.    

31

21

SS

SS




 p (a1 , …, an) 

n

2

1

a

:

a

a

Input variables 
aiв 

 
P Pn 

Diagram-1 

3

2

1

a

a

a

   a1a2 + a1a3 Diagram-2 

 
 

P 
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(iii).  A symbolic representation (that is, a combination of gates) which represents a 

polynomial,  is called a gating network.  

 

18.4.4.   Notation:  Different gates that we use are given below: 

 

 

 

 

 

 

 

 

 

 

 

 

18.4.5.  Notation: We also use a small black disk (either before or after) one of the other 

gates to indicate an inverter.  

 

18.4.6 Example:    

 

 

 

 

18.4.7  Definitions: 

 

 

 

 

 

 

 

 

 

(i) identity-gate (symbolizes   x); a a 

(iii) 
AND-gate  
(symbolizes  
x1x2 … xn); 

a1 

a2 

: 

an 

a1a2 … an 

(iv) 
OR-gate  

(symbolizes 

x1 + … + xn) 

 

a1 

a2 

: 

an 

a1 + … + an 

a2 
a1a2

1 a1 
(ii) 

(iii) 
a2 

(a1a2)1 
a1 

NAND-gate or 
Sheffer-operation 

(ii) 
NOT-gate  (or  inverter) 

(symbolizes  x1); 
a1 a 

a2 
(a1a2)1 

a1 
(i) 

a2 

a1 
a1

1 + a2  Subjunction-gate (i) 

a2 

a1 
(a1  + a2)1  NOR-gate or 
                 Pierce-operation 

(ii) 
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18.4.8 Problem: Write down the gating network for the polynomial   p  =  (x1
1x2)1 + x3 . 

 

Solution: The required gating network is given by the Figure-11. 

 

 

 

 

 

18.4.9 Problem: (i) Find the polynomial  p  which corresponds to the gating network given in 

the Figure-12. 
 

(ii) Find a simplified gating network which operates in the same way as the gating  

 

network given in Figure-12. 

 

 

 

 

 

 

 

 

Solution: (i)  The polynomial that represents the given gating network is    

p  =  ((x1x2)1x3 + x4) (x1x2 + x3
1x4). 

 

  (ii)  By using the Quine-McCluskey algorithm we get a  

simplified form   q  = x1x2x4 + x3
1x4   of   p. 

 

 

 

 

 

 

Now,  the gating network which represents  q  is given by the Figure-13. 

18.4.10 Note: From the problem 18.4.9,  we conclude the following: (i)  p    q, and p q   

a3 
a2 

a1 

P (a1 , a2, a3) 

Figure-11 

a4 

a3 

a2 

a1 

Figure-12 

a4 

a3 

a2 

a1 

Figure-13 
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(ii) The gating network for q  contains very less number of gates than that of the gating 

network for  p  so  q  (the gating network for  q) is much cheaper than  q (the gating network 

for  p). 
 

18.4.11 Note: In the following table we present all  
222  =  16  Boolean polynomial functions 

on  B ={0, 1}.  

The following table shows the functional values of these polynomial functions.  

 

 

 

 

 

 

 

 

 

 

 

Some polynomials given in this table are important in the algebra of switching circuits. They 

are given below: 

 

 

 

 

 

 

18.5  SUMMARY: 
 
In this lesson, we have studied an important application of Boolean algebra lies in the realm 
of electrical engineering.  We have illustrated several examples of switching circuits which 
will be used in the next lesson to understand several applications to use of devices such as 
mechanical switches, diodes,  magnetic dipoles, and transistors are two state devices, etc.  We 
also provide another representation, called gating network of Boolean expressions.  For better 
understanding of the reader, we included examples. 
 
 
 

2p   …  AND-function 

3p   … inhibit-function 

7p  … antivalence-function 

8p    … OR-function 

 

9p    … NOR-function 

01p   … equivalence-function 

14p   … implication-function 

15p  … NAND-function 

 

b1 b2 
1p  2p

 
3p

 
4p

 
5p

 
6p

 
7p

 
8p

 
0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 

 

9p

 

01p

 

11p

 
12p

 
31p

 
14p

 
15p

 
16p

 
1 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 
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18.6  TECHNICAL TERMS: 
 

1.  Complementation switch. 
 x1

i is called the complementation switch of   xi. 
 
2.  Series connection 
 xixj  is called the series connection of   xi   and   xj. 
 
 
3.   Parallel connection 
    xi  + xj    is called the parallel connection  of    xi   and   xj. 

 
4.   NOR gate  
 

 

 

5.  NAND-gate 

 

 

 
18.7  SELF ASSESSMENT QUESTIONS: 
 
1.   Draw the switching circuit that represent the given Boolean expression:  x1 (x2 x3). 
Ans: (refer: Problem 18.2.3.(i)) 
 

2.   Draw the switching circuit that represent the given Boolean expression:  
 (x1 x2)  (x1 x3).  
Ans: (refer: Problem 18.2.3.(ii)) 
 

3.  Write down the equivalent Boolean polynomial for the given switching circuit. 

 

 

 

 

 

 

 
 
Ans:  The required Boolean polynomial is  
q  =  x1(x2

1 (x6 + x3 (x4 + x5
1)) + x7(x3 + x6)x8

1). 
 

4.  Write an algorithm to find a simplified electrical circuit for a given Boolean expression. 
Ans:  (refer: Note. 18.3.5.) 

1
5

4

x

x

6

3

x

x
x7 

x2
1 

- x1 

6

3

x

x

Figure-10 

x8
1

 

 
a2 

(a1a2)1 
a1 

NAND-gate or 
Sheffer-operation 

a2 

a1 
(a1  + a2)1  NOR-gate or 
                 Pierce-operation 
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5.    Write down the gating network for the polynomial   p  =  (x1
1x2)1 + x3 . 

Ans: The required gating network is given by the Figure-11. 

 

 

 

 

 

6.    (i).  Find the polynomial  p  which corresponds to the gating network given in the Figure-
12. 
 
(ii). Find a simplified gating network which operates in the same way as the gating network 
given in Figure-12. 
 

 

 

 

 
 
 

 
 
 
Ans: (i).  The polynomial that represents the given gating network is    
p  =  ((x1x2)1x3 + x4) (x1x2 + x3

1x4). 
 
  (ii).  By using the Quine-McCluskey algorithm we get a  
simplified form   q  = x1x2x4 + x3

1x4   of   p. 
 

 

 

 

 

 

Now,  the gating network which represents  q  is given by the Figure-13. 

 

18.8  SUGGESTED READINGS:  

 
1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 

Theory, Prentice Hall India Ltd., New Delhi,  2014 (second edition) ISBN-978-81-
203-4948-3. 
 

a3 
a2 

a1 

P (a1 , a2, a3) 

Figure-11 

a4 

a3 

a2 

a1 

Figure-12 

a4 

a3 

a2 

a1 

Figure-13 
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LESSON 19 

SOME APPLICATIONS 
 
OBJECTIVE : 
 
 To know Half Adder.  
 To Understand the Applications of switching circuits  
 To know the Full Adder.  
 To have proper understanding of Applications.  
 To develop skills to construct gatting networks. 

 
STRUCTURE: 

19.1  Introduction 
19.2  Half-Adder and Full-Adder  
19.3  Some Applications.  
19.4  Summary 
19.5  Technical Terms 
19.6  Self Assessment Questions 
19.7  Suggested Readings 
 
19.1.  INTRODUCTION:  
 

In this lesson, we study various practical applications of switching circuits or networks.  
Among different approaches of expressing Boolean expressions, gating network and 
switching circuits have several applications in science, engineering and technology;.  
 
19.2  HALF-ADDER AND FULL-ADDER:  

 

In this section, we study two important gatting networks namely Half Adder, and Full Adder. 
 

19.2.1 Note: Consider the polynomials s  =  (x1x2)1.(x1 +x2),  and  c  = x1x2.   
 
(i) Now we write a gating network (refer Gating Network-1) whose input is  x1, x2  and the 
output is  the values of the expressions  s   and   c  at the given values   
x1  =  a1   and   x2  =  a2. 
 

 

 

 
 
 
 
(ii)   Observe Gating Network-1.  If  a1,  a2   is the input to the Gating Network-1,  then the 

output is  the values of  s (a1, a2)  and   c (a1, a2)  for all  a1,  a2   {0, 1}. 
 
(iii) The Gating Network-1 is called half-adder. 

a2 c (a1, a2) 

s (a1, a2) 

a1 

Gating Network-1 

-
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(iv) The gating network related to half-adder is denoted by 
 

19.2.2 Problem: Let  a1,  a2   {0, 1}. 

(i) Find out two polynomials  p  and   c  which represents the units digit and the 2's digit 
(respectively) (we may call this 2's digit as carry) of the binary sum   a1 + a2.   
 

(ii) Write down the gating network to get polynomials p and  c from the given  
input a1,  a2. 
 

(iii) Find a simpler gating network to get  p  and  c  from  the given input   a1,  a2.  
 (If possible, use the half-adder). 
 
Solution: (i) Suppose we add two single digit binary numbers   a1   and   a2. 
Suppose  p  is the units digit of   a1 + a2,  and   c  is the 2's digit of   a1 + a2.      

For example,  if  a1  =  a2  =  1, then the sum is 10,  and so  p (a1, a2) =  0,   c (a1, a2)  =  1. 

The functional values for  p (a1, a2)  and c (a1, a2)  is given by  the table-1.   

Observe table-1. Now by using table-1 and block box method, we get the following 

disjunctive normal forms for  p  and  c. 

p  =  x1x2
1 + x1

1x2 

c  =  x1x2. 

 

 

 

 

 

(ii) Now we draw the gating network whose input is  a1,  a2  and output is   p (a1, a2)   and   c
(a1, a2).  This was given in the following gating network-2. 
 

 

 

 

 

 

 

  
(iii) To find a simpler network for the gating network-2, we have to modify the expression for  
p  by using the laws of Boolean algebra.  
The expression for  c  is already in simplest form.  
 

a1 a2 p (a1, a2) c (a1, a2) 
1 1 0 1 
1 0 1 0 
0 1 1 0 
0 0 0 0 

 

Table-1 

c (a1, a2) 

p (a1, a2) 

a2 

a1 

Gating Network-2 

 

HA 



 Advanced Discrete Mathematics                         19.3                               Some Applications              
 

Now  p  =   x1x2
1 + (x1

1x2)    =  (x1
1+ x2)1 + (x1 + x2

1)1     (by Demorgan's laws) 

            =  ((x1
1+ x2)( x1

1+ x2
1))1             (by Demorgan's laws) 

            =  (x1
1x1 + x2x1 + x1

1x2
1 + x2x2

1)1  (by distributive law) 

            = (x1x2 +x1
1x2

1)1  (by complement laws)  =  (x1x2)1 (x1
1x2

1)1 (by Demorgan's laws) 

            =  (x1x2)1.(x1 +x2)             (by Demorgan's laws) 

Write  s  =  (x1x2)1.(x1 +x2).   Now  p ~  s.   

The gating network for  s  and  c  is given in gating network-3.   

 

 

 

 

 

 

 

It is clear that gating network-3  is a simpler network than the gating network-2. 
By using the half-adder, we can represent the gating network-3  as follows: 
 

 

 

19.2.3 Note: A gating network called as Full-adder can add three one-digit binary numbers.  
Let   a1,  a2,  a3   denote the three numbers to be added.   
Suppose  s  denotes the units digit and  c  denotes  the 2's  digit of the sum  a1 + a2 + a3. 
   
 (i).  The functional values are given in table-2. 
The disjunctive normal form of the polynomials  s  and  c are given below: 
 

s  =  x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3. 

c  = x1x2x3 + x1x2x3
1 + x1x2

1x3+ x1
1x2x3. 

 

 

 

 

 

 

 

 

a2 c (a1, a2) 

s (a1, a2) 

a1 

Gating Network-3 

a2 

HA 
c (a1, a2) 

s (a1, a2) a1 

a1 a2 a3 s (a1, a2, a3) c (a1, a2, a3) 
1 1 1 1 1 
1 1 0 0 1 
1 0 1 0 1 
1 0 0 1 0 
0 1 1 0 1 
0 1 0 1 0 
0 0 1 1 0 
0 0 0 0 0 

 

Table-2 
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(ii).  Suppose  s1  denotes the units digit and  c1  denotes the 2's digit of  a2 + a3 .  
Then the functional values are given in Table-3. 
 

 

 

 

 

 

 

 

 (iii) Suppose  c2  is the 2's digit of the sum  a1 + 1s (a2, a3). 
Then the functional values are given in Table-4. 
 

 

 

 

 

 

 

 

 

 

(iv) The relation between c1, c2  and  c  presented in Table-5. 

 

 

 

 

 

 

 

 

 

 

 

 

1c (a2, a3) 2c (a1 , 1s (a2, a3)) 2c (a1, a2, a3)) 

1 0 1 
0 1 1 
0 1 1 
0 0 0 
1 0 1 
0 0 0 
0 0 0 
0 0 0 

 
Table-5 

Table-3 

a2 a3 1s (a2, a3) 1c (a2, a3) 
1 1 0 1 
1 0 1 0 
0 1 1 0 
0 0 0 0 
1 1 0 1 
1 0 1 0 
0 1 1 0 
0 0 0 0 

 

a1 1s (a2, a3) s (a1 , a2, a3) 2c (a1, 1s (a2, a3)) 
1 0 1 0 
1 1 0 1 
1 1 0 1 
1 0 1 0 
0 0 0 0 
0 1 1 0 
0 1 1 0 
0 0 0 0 

Table-4 
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(v) Consider the gating network-4.  Here we used two half-adders.  

 

 

 

 

 

 

Now we understand that  a2   and   a3   are inputs of a half-adder with outputs    1s (a2, a3)   and   

1c (a2, a3).    

The output   1s (a2, a3)    together with   a1   forms inputs of a second half-adder,  whose 

outputs are   s (a1 , a2, a3)   and  2c (a1 , 1s (a2, a3)).   

Hence   s (a1 , a2, a3)   is the final sum  a1 + a2 + a3. 

 Finally,  the sum of  1c (a2, a3)  and  2c (a1 , 1s (a2, a3))  gives   c (a1 , a2, a3).   
This gating network is called the full-adder. 
So a full-adder is composed of two half-adders and one OR-gate as shown in the gating 
network-4.  
 

 

 

 

 

 

 

 
 

Observe that gating networks 4  and  5  are same. 
A symbolic representation of the full adder is given by 
 

 

 

19.2.4  Problem:  Find a polynomial  p  satisfying the following conditions: 

p  =  x2x3  if  x1  =  0 

p  =  x2 +x3   if  x1  =  1. 

Solution: Suppose a1, a2,  a3  {0, 1}.  The functional values are given in table-6. 

 

 

a3 

a2 ADD 
c (a1, a2, a3) 

s (a1, a2, a3) 
a1 

1c (a2, a3) 
1s (a2, a3) 2c (a1 , 1s (a2, a3)) 

a3 

a2 
HA 

c (a1, a2, a3) 

s (a1, a2, a3) 
a1 

HA 

Gating Network-4 

c (a1, a2, a3) 

s (a1, a2, a3) 
a1 

a2 

a3 

Gating Network-5 
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By table-6  and  block box method,  we get the disjunctive normal form for  p. 

The form is   p  =  x1
1x2x3 + x1x2

1x3 + x1x2x3
1  + x1x2x3. 

 

19.2.5 Example: (Chakrabarti's Cell):  Suppose   k  =  2   and   n  =  5.  We want to find a 

polynomial   p  with the following conditions: 

p (a1, a2, a3, a4, a5)  =  NOR(a3, a4, a5)   if  (a1, a2)  =  (0, 0);  

p (a1, a2, a3, a4, a5)  =  OR(a3, a4, a5)   if  (a1, a2)  =  (0, 1);  

p (a1, a2, a3, a4, a5)   =  NAND(a3, a4, a5)   if   (a1, a2)  =  (1, 0);  

p (a1, a2, a3, a4, a5)   =  AND(a3, a4, a5)   if  (a1, a2)  =  (1, 1).  

The polynomial  p  satisfying these conditions is given by   

p  = x2
1x3

1x4
1x5

1  + x1x2
1x3

1 + x1x2
1x4

1 + x1x2
1x5

1 + x1
1x2x3 + x1

1x2x4 + x1
1x2x5 + x2x3x4x5.    

 

19.3  SOME APPLICATIONS:  

 
In this section, we study some applications of switching circuits related to central lighting 
system in a big room;  paper movements and the related control mechanism in fast printers of 
computers, and in the machines for paper production; and  Elivator Services, etc ., 
 

19.3.1  Some Applications:  

Suppose there is a big room with central lighting system.  To operate this central lighting 
system there are switches at three different places near by the respective entrance doors.  
These three switches operate alternatively.  That is,  each of these three switches can "switch 
on" or "switch off" the lighting system.   
 
(i) We wish to determine the related switching circuit   p,  and   its symbolic polynomial 
representation.  
Each switch got two states: "on" or "off".   We denote these three switches by   x1,  x2,  x3   

and the two possible states of the switches   xi   by   ai   {0, 1}.  

The light situation (whether on or off) in the room is given by the value   

a1 a2 a3 p (a1, a2, a3) 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

Table-6 
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 p (a1, a2, a3)  =  0  (or 1) if the lights are off (or on), respectively.   

We suppose that if all the three switches  x1,  x2,  x3   are in the state "on" (that is,  the value 

of all the variables x1,  x2,  x3  is equal to 1) then the central lighting system is on (that is,  the 

value of  p  =  1).  

So we write this situation as:   p (1, 1, 1)  =  1. 

 
If we operate any one of the three switches,  then the lights go off,  that is we have   

p (a1, a2, a3)  =  0   for all   (a1, a2, a3)   which differ in one place from  (1, 1, 1). 

Similarly we have that   p (a1, a2, a3)  =  0   for all   (a1, a2, a3)   which differ in three  places 

from  (1, 1, 1).    In other words, p (a1, a2, a3)  =  0  if   (a1, a2, a3)  =  (0, 0, 0). 

 
(ii) Suppose the lights are in the state on.   Then if we operate any two switches,  the lights 

still stay on.   

That is,  we have that  p (a1, a2, a3)  =  1   for all those  (a1, a2, a3)   which differ in two places 

from   (1, 1, 1). 

 
(iii) If the polynomial   p  satisfies the said set of conditions then we get the table-7  which 
provides  the function values. 
 

 

 

 

 

 

 

 

 

From this table-7,  we can get the following disjunctive normal form for  p:  

p   =  x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3. 

 

 

 

 

 

a1 a2 a3 minterms p (a1, a2, a3) 

1 1 1 x1x2x3 1 
1 1 0 x1x2x3

1 0 
1 0 1 x1x2

1x3 0 
1 0 0 x1x2

1x3
1 1 

0 1 1 x1
1x2x3

 0 
0 1 0 x1

1x2x3
1 1 

0 0 1 x1
1x2

1x3 1 
0 0 0 x1

1x2
1x3

1 0 
 

Table-7 
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(iv)  The gating network for  p  is given by the gating network-6.  

 

 

 

 

 

 

 

 

Note that the above polynomial expression for   p   is already in minimal form.   
 

   (v) Observe that   

p  =  x1x2x3 + x1x2
1x3

1 + x1
1x2x3

1 + x1
1x2

1x3. 

    ~   x1(x2x3 + x2
1x3

1)  +  x1
1(x2x3

1 + x2
1x3)  =  q 

 

   (vi) The switching circuit diagram for  q  was given in the Figure-1. 

 

 

 

 

 
 
19.3.2 Example: In the fast printers of computers, and in the machines for paper production,  
a careful control of the paper movements is essential.  We present a diagram (please see the 
diagram-2) which shows a schematic model of the method of paper movements and the 
related control mechanism.   
 
The motor operates a pair of cylinders (1), which helps the  movement of paper (2).  
Due to this paper strip (2) the light from lamp (3) can not be fall on the photo cell (4). 
If the paper strip breaks,  then the light from lamp (3) be fall on the photo cell (4). 
Since the photo cell (4) receives the light and passes on an impulse which switch off the 
motor.   
 
(i) The light in lamp  (3)  can vary its brightness or it can fail.  So an another photo cell (5) 
supervises the brightness of the lamp (3).  
The work of lamp is satisfactory if  its brightness is above a fixed given value  a.   
If the brightness is below  a,  and above a minimum value   b,  then the situation is indicated 
by the warning lamp (6). In this  case, the paper movement mechanism still operates as it is.   
If  the brightness of the lamp is below   b,  then the photo    cell (4) cannot work 
satisfactorily,  and so the motor is switched off.   
 










32
1

3
1

2

xx

xx

 









3

1
2

1

32

xx

xx

 

x1 

x1
1 

Figure-1 

a3 
a2 
a1 

Gating 
Network-6 
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(ii) Now we represents this situation in mathematical symbols as follows:  

a1  =  1   if  the brightness of  (3)  >  a; 

a1  =  0   if  the brightness of  (3)    a; 

a2  =  1   if  the brightness of  (3)  >  b; 

a2  =  0   if  the brightness of  (3)    b; 

a3  =  1   if  the paper strip is broken; 

a3  =  0   if  the paper strip is unbroken.   

Note that   b <  a. 

 

(iii) Suppose  1p (a1, a2, a3)  is the Boolean function related to the state of the motor,  and  2p

(a1, a2, a3)  is the Boolean function related to the state of warning lamp. 

Now we define  

1p (a1, a2, a3)  =  1      motor operates; 

1p (a1, a2, a3)  =  0      motor is switched off; 

2p (a1, a2, a3)  =  1     warning lamp  (6)  operates; 

2p (a1, a2, a3)  =  0     warning lamp  (6)  does not operate. 

(iv) The values of the functions  1p (a1, a2, a3),  and  

2p (a1, a2, a3)  were presented in the table-8.  

 
 
 
 
 

to motor 

photo cell (4) 

Paper strip (2) 

Pair of cylinders (1) warning  
lamp (6) 

lamp (3) 

p 

p 

photo cell (5) 

Diagram-2 
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Observe that the case   a1  =  1,  a2  =  0   cannot occur.   

That is,  the case   a1  =  1,  a2  =  0  is an impossible case. 

At this situation,  we may assign arbitrary values for  1p    and   2p    in the table-8 (Don’t-

care combinations).   

Now in the impossible cases,   we assign  0  for  1p    and   2p  (as don't care combinations)  
 

(v) From table-8 we get the following disjunctive normal forms for  p1  and  p2.  

p1  =  x1x2x3
1 + x1

1x2x3
1  ~  x2x3

1.   

p2  =  x1
1x2x3+ x1

1x2x3
1  ~  x1

1x2.   
 

(vi) From the above point (v),  we conclude that the state of motor (p1) is not depend  
on  a1.  
Also it is clear that the state of warning lamp  (p2) is not depend on  a2. 
 

(vii) The gating network for the functions  1p    and   2p  given in the diagram-3. 
 

 

 

 

 

 

 

19.3.3  Example: A motor is supplied by three generators.  The operation of each generator 
is monitored by a corresponding switching element which closes a circuit as soon as a 
generator fails.  We demand the following conditions from the electrical monitoring system: 
 

(i)   A warning lamp lights up if one or two generators fail. 
(ii)   An acoustic alarm is initiated if two or all three generators fail. 

a1 a2 a3 
1p (a1, a2, a3) 2p (a1, a2, a3) 

1 1 1 0 0 
1 1 0 1 0 
1 0 1   
1 0 0   
0 1 1 0 1 
0 1 0 1 1 
0 0 1 0 0 
0 0 0 0 0 

 
Table-8 

a1 

a2 

a3 1P  (a1, a2, a3)  =  a2a3
1 

2P  (a1, a2, a3)  =  a1
1a2 

Diagram-3 
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We determine a symbolic representation as a mathematical model of this problem.  Let   a1  =  

0   denote that generator   i   is operating,  i    {1, 2, 3};  a1  =  1   denotes that generator   i   

does not operate.  The table of function values has two parts   1p (a1, a2, a3)   and   2p (a1, a2, 

a3),  defined by: 

1p (a1, a2, a3)  =  1 :    acoustic alarm sounds; 

1p (a1, a2, a3)  =  0 :    acoustic alarm does not sounds; 

2p (a1, a2, a3)  =  1 :    warning lamp lights up; 

2p (a1, a2, a3)  =  0 :    warning lamp is not lit up 

Then we obtain the following table for the function values: 
  

 

 

 

 

 

 

 

For   p1   we choose the disjunctive normal form,  namely 

p1  = x1x2x3 + x1 x2x1
3 + x1x1

2x3 + x1
1 x2x3. 

This can be simplified by using rules of a Boolean algebra:    

p  ~  x1x2  +  x2x3  +  x1x3. 

For   p2   we choose the conjunctive normal form, which is preferable if there are many   1's  

as function values:   

p2  =  (x1 + x2 + x3)( x1
1x1

2x1
3).   

The symbolic representation is 
 

 

 

 

 

 

 

 

a1 a2 a3 
1p (a1, a2, a3) 2p (a1, a2, a3) 

1 1 1 1 0 
1 1 0 1 1 
1 0 1 1 1 
1 0 0 0 1 
0 1 1 1 1 
0 1 0 0 1 
0 0 1 1 0 
0 0 0 0 0 

 

1p (a1, a2, a3) 

2p (a1, a2, a3) 
a3 
a2 
a1 
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One of the applications of Boolean algebras in the simplification of electromechanical  
or electronic switching circuits.  In order to economize,  it is often useful to construct 
switching circuits in such a way that the costs for their technical realization are as small as 
possible,  example that a minimal number of gates is used.  Unfortunately,  it is often difficult 
to decide from the diagram of a switching circuit whether its technical implementation is 
simple.  Also, the simplest and most economical switching circuit may not necessarily be a 
series-parallel connection, in which case switching algebra is not of much help.  Some 
methods of simplification other than the Quine-McCluskey algorithms are discussed in 
Dornhoff and Hohn (1978) and also in Hohn  (1970). 

 
19.3.4. Remark:  A switching circuit   p   can be simplified by our methods,  as follows: 
     
(i) It can be simplified according to the laws of a Boolean algebra  (example,  by applying the 
distributive,  idempotent,  absorption,  and de Morgan laws). 
 

(ii) Sometimes calculating the dual   d(p)   of   p   and simplifying the dual yields a simple 
expression. 
 

(iii) We can also determine the minimal form of   p   by using the method of Quine and 
McCluskey.  Recall that this algorithm can only be started if   p   is in disjunctive normal 
form. 
 

(iv) Use Karnaugh diagrams. 
 

 

19.3.5 Example:  We give an example for the first two methods mentioned in 19.3.4. 

(i)  p  =  (x1
1+ x2 + x3 + x4)(x1

1+ x2 + x3 + x4
1)( x1

1+ x2
1+ x3 + x4

1). 

        ~  (x1
1+ x2 + x3)(x1

1+ x3 + x4
1)  ~  x1

1+ x3 + x3x4
1 

Here,  we have used the fact  (  +  )(  +  1)  =     twice. 

(ii) p  =  ((x1 + x2) (x1 + x3)) + (x1x2x3) 

          ~ 
  

1p:

32121 ))xxx()xx((



  

2p:

32131 ))xxx()xx((


 . 

Let   d   denote "dual of".   

We have   d(p1)  =  (x1x2)( x1+ x2 + x3) ~ x1x2.  Therefore   d(d(p1))  ~  x1 + x2.   

Also,  (x1x3)( x1+ x2 + x3) ~ x1x3.  Thus   d(d(p2))  ~  x1 + x3.  Altogether we have   

 p  ~  p1p2  ~  (x1x3)( x1+ x2 + x3) ~  x1 + x2x3. 
 

We consider two more examples of applications  (due to Dokter  and Steinhauer  (1972)). 
 

19.3.6 Example: An elevator services three floors.  On each floor there is a call-button   C   
to call the elevator.  It is assumed that at the moment of call the cabin is stationary at one of 
the three floors.   
 
Using these six input variables we want to determine a control which moves the motor   M   
in the right direction for the current situation.   
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One,  two,  or three call-buttons may be pressed simultaneously;  so there are eight possible 
combinations of calls,  the cabin being at one of the three floors.  Thus we have to consider   

38    =  24   combinations of the total   26  =  64   input variables.   
 

We use the following notations:   a1  :=  ci  (for  i  =  1, 2, 3)  for the call-signals.  ci  =  0  (or  

1)  indicates that no call  (or a call) comes from floor   4ai    :=  f1,  a5  :=  f2,  a6  :=  f3  are 

position signals;  fi  =  1  means the elevator cabin is on floor   )a...,,a(pi 611   =:  M  ,  

)a...,,a(p 611   =: M   indicate the direction of movement to be given to the motor;  then 

the signal   M   =  1  means movement of the motor upward,  etc.  The output signals  

(function values)  of the motor does not operate.   

 
If a call comes from the floor where the cabin is at present,  again the motor does not operate.  

Otherwise,  the motor follows the direction of the call.   

 

The only exception is the case when the cabin is at the second floor and there are two 

simultaneous calls from the third and first floor.  We agree that the cabin goes down first.   

Figure  8.4  shows the table of function values.   
 

From this table we derive the switching circuits   p1   for   M    and   p2   for  M   in 

disjunctive normal form.   

Here   xi   are replaced by   Ci   for   i  =  1, 2, 3   and by   Fi-3   for   i  =  4, 5, 6. 

 

P1  ~  C1
1C2C3F1F1

2F1
3 + C1

1C2C1
3F1F1

2F1
3 + C1

1C1
2C3F1F1

2F1
3 + C1

1C1
2C3F1

1F2F1
3. 

 

The first and third minterms are complementary with respect to   C2   and can be combined.  

This gives:   
 

P1  ~  C1
1C2C1

3F1F1
2F1

3 + C1
1C3F1F1

2F1
3 + C1

1C1
2C3F1

1F2F1
3 . 

For   M    we obtain 
 

P2  ~  C1C1
2C3F1

1F2F1
3 + C1C1

2C1
3F1

1F2F1
3 + C1C2C1

3F1
1F1

2F3 

          + C1C1
2C1

3F1
1F1

2F3 + C1
1C2C1

3F1
1F1

2F3. 
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The first two minterms are complementary with respect to   C3,  the third and fourth minterm 

are complementary with respect to   C2.  Simplification gives  

P2  ~  C1C1
2F1

1F2F1
3 + C1C1

3F1
1F1

2F3 + C1
1C2C1

3F1
1F1

2F3 . 

 

 

 

 

 

 

 

 

 

 

 
f1 

f2 

f3 

C3 

C1 

M   

M   

C2 

Figure 2 

Call Floor Direction  of 
motor 

c1 c2 c3 f1 f2 f3 M   M  
1 1 1 1 0 0 0 0 
1 1 0 1 0 0 0 0 
1 0 1 1 0 0 0 0 
1 0 0 1 0 0 0 0 
0 1 1 1 0 0 1 0 
0 1 0 1 0 0 1 0 
0 0 1 1 0 0 1 0 
0 0 0 1 0 0 0 0 
1 1 1 0 1 0 0 0 
1 1 0 0 1 0 0 0 
1 0 1 0 1 0 0 1 
1 0 0 0 1 0 0 1 
0 1 1 0 1 0 0 0 
0 1 0 0 1 0 0 0 
0 0 1 0 1 0 1 0 
0 0 0 0 1 0 0 0 
1 1 1 0 0 1 0 0 
1 1 0 0 0 1 0 1 
1 0 1 0 0 1 0 0 
1 0 0 0 0 1 0 1 
0 1 1 0 0 1 0 0 
0 1 0 0 0 1 0 1 
0 0 1 0 0 1 0 0 
0 0 0 0 0 1 0 0 
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The two switching circuits enable us to design the symbolic representation of Figure 2  (we 

have six NOT-gates,  AND-gates,  and two OR-gates).   

Observe that in above three Examples we had not only a switching circuit,  but a switching 

network,  which differ from a circuit by having multiple outputs: 

Optimizing such a network reduces to the minimization of all circuits  

We have precisely done that in these examples. 

 

 

 

 

As another example of applications of this type we consider the addition of binary numbers 
with half-adders and adders.  Decimals can be represented in terms of quadruples of binary 
numbers;  such a quadruple is called a tetrad.   
Each digit of a decimal gets assigned a tetrad;  thus we use then different tetrads 

corresponding to   

0, 1, 2, …, 9.  Using four binary positions we can form   24  =  16   tetrads.  Since we need 

only ten tetrads,  which are called pseudotetrads.   

A binary coded decimal then uses the following association between   0, 1, …, 9   and tetrads: 

 

 

 

 

1p (a1, a2, a3)  =  1 denotes the pseudotetrads.  We have to evaluate  1p (a1, a2, a3)  to find out 

if the result of a computing operation is a psedotetrad. 
 

 

 

 

 

 

 

 

 

 

 

outputs 

m

2

1

b

:

b

b






 Switching 
network 

a1 

a2 

: 
 

a3 

Inputs ;b i
 

a1 

 : 
 

an 

 a3 a2 a1 a0 
0p (a1, a2, a3) 

 1 1 1 1 1 
 1 1 1 0 1 
 1 1 0 1 1 
 1 1 0 0 1 
 1 0 1 1 1 
 1 0 1 0 0 
9 1 0 0 1 0 
8 1 0 0 0 0 
7 0 1 1 1 0 
6 0 1 1 0 0 
5 0 1 0 1 0 
4 0 1 0 0 0 
3 0 0 1 1 0 
2 0 0 1 0 0 
1 0 0 0 1 0 
0 0 0 0 0 0 

 

a3 

a2 

a1 
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We represent   p   in disjunctive normal form:  

p  =  x3x2x1x0 + x3x2x1x1
0 + x3x2x1

1x1
0 + x3x1

2x1x0 + x3x1
2x1x1

0. 

The pairs of minterms  1  and   2,  3   and  6  are complementary with respect to   x0   and can 

be simplified: 

p  ~  x3x2x1  + x3x2x1
1 + x3x1

2x1 

    ~  x3x2x1  + x3x2x1 + x3x2x1
1 + x3x1

2x1   

    ~  (x3x2x1  + x3x2x1
1) + (x3x2x1 + x3x1

2x1) 

    ~x3x2  + x3x1 ~ x3 (x2 + x1). 

This result indicates that determining if a tetrad with four positions   a0, a1, a2, a3   is a 
pseudotetrad is independent of   a0.  If we use the   ai   as inputs,  then Figure  8.6  indicates 
the occurrence of a pseudotetrad. 
 

19.4  SUMMARY: 
 
In this lesson, we studied two important gatting networks namely: Half adder, and Full adder, 
also presented their diagrams. we have described some applications through examples using 
Boolean expressions and gating networks.  These are having useful applications in electrical 
engineering and network engineering. In particular, in the last section, we study some 
applications of switching circuits related to central lighting system in a big room;  paper 
movements and the related control mechanism in fast printers of computers, and in the 
machines for paper production; and  Elivator Services, etc ., 

 
19.5  TECHNICAL TERMS: 

 
1. Half-adder. 

(refer:  Example. 19.2.1.) 
 

2.  Full-adder. 
A gating network called as Full-adder can add three one-digit binary numbers. 
(refer: Note 19.2.3.) 
 

3.  Chakrabarti's Cell: 
(refer: Example 19.2.5.) 
 

19.6  SELF ASSESSMENT QUESTIONS: 
 
1. Draw the diagram of Half Adder. 

Ans: (refer:  Example. 19.2.1.) 
  
2.  What the Full-adder can do.  Draw the diagram of Full adder. 

Ans:  A gating network called as Full-adder can add three one-digit binary numbers. 
(refer: Note 19.2.3.) 

 
3.  What do you mean by Chakrabarti's Cell. 

Ans: (refer: Example 19.2.5.) 
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19.7  SUGGESTED READINGS:  
 

1. Bhavanari Satyanarayana and Kuncham Syam Prasad, Discrete Mathematics & Graph 
Theory, Prentice Hall India Ltd., New Delhi,  2014 (second edition) ISBN-978-81-
203-4948-3. 
 

2.  James L. Fisher, Application Oriented Algebra (second edition) UTM, Springer, 
1977. 

 
3. Bhavanari Satyanarayana, T.V.P. Kumar and SK Mohiddin Shaw, Mathematical 

Foundations of Computer Science, CRC Press, London, 2019, e-ISBN-
9780367367237. 

  
4. R. Lidl and G. Pilz, Applied Abstract Algebra, second edition, UTM Springer, 1998.  

 
 

Prof.  Dr. Harikrishnan Panackal 
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